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1. Introduction. Much progress has been made in abstract Fourier analysis
by proving analogues of well known trigonometric trsults. The purpose of
this research was to investigate the Haar series analogue of a theorem due to
Marcel Riesz [4]. Specifically:

THEOREM 1. Suppose the Haar series

S(x) akx(x)

with a o(k) is Cesaro summable to a ]unction ](x) which is integrable and
finite valued over [0, 1]. Then S is the Haar Fourier series o] ](x).

This theorem is a corollary to Theorem 2.

We define the Haar functions by setting x0(x) 1, xl(x) 1 if 0 _< x <: 1/2
and xl(x) --1 if 1/2 < x

_
1 with xl(1/2) 0. For any integer n > 1 we write

it uniquely as n 2 W k where 0 /c < 2, and as in [5] we define the intervals

(1) A(1, n) (I/2’, (k + 1/2)/2m)

n) + 1/2)/2 +
Then the nth Haar function is defined as

0

if x e A(1, n)

if x A(2, n)

if x= +1/2

if x /c/2
otherwise

A*(i, n) will represent the closure of h(i, n).
Given a Haar series

(2) S(x) lim S.(x) lim ax(x)
k

we define its Cesaro sum to be

o-(S, x) lim o-,(S, x) lim
1 o S(x)

The series (2) is said to satisfy condition G if for every Xo [0, 1],
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