SOME IDENTITIES IN COMBINATORIAL ANALYSIS

By L. CArLITZ
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The identities were first proved by Rogers [3], [4] and rediscovered by Sel-
berg [5]. Simpler proofs were given later by Dyson [2]. The present writer [1]
has recently given a simple proof of the Rogers-Ramanujan identities that
makes use of some properties of the ‘“basic’’ Bessel function I,(f) defined by
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The object of the present paper is to give a similar proof of (1.1), (1.2) and (1.3).

2. We shall require some easily proved properties of I,(f). In the first place
it follows easily from (1.4) that

. n(n—l)t2n
2.1 L,@) = z*
@ w) =2 B
n3 2n+1
2.2) Ly () = 2***0 E :

n=0 (x)n+k+l(x)n—h !
where as usual

(a)o =1, (a)n = (1 - a)(l - xa) e (1= x”_la) (n =123, "')
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