METRIC-DEPENDENT FUNCTION d_2 AND COVERING DIMENSION

By J. H. ROBERTS

1. Introduction. In [5], K. Nagami and the author introduced the metric-dependent function d_2 , defined for every metric space (X, ρ) .

DEFINITION. $d_2(X, \rho)$ is the smallest integer n (if such integer exists) such that if C_1 , C'_1 ; \cdots ; C_{n+1} , C'_{n+1} are n+1 pairs of closed sets with $\rho(C_i, C'_i) > 0$ for $i = 1, 2, \cdots, n+1$, then there exist closed sets B_1 , \cdots , B_{n+1} with B_i separating C_i from C'_i in X and such that $\bigcap_{i=1}^{n+1} B_i = \emptyset$. If no such integer n exists, then $d_2(X, \rho) = \infty$.

It is natural to think of d_2 as "Eilenberg-Otto positive distance dimension", for the following reason: If the requirement " $\rho(C_i, C_i') > 0$ " is replaced by " $C_i \cap C_i' = \emptyset$ ", one obtains the Eilenberg-Otto characterization of covering dimension (applicable even if the space is merely normal). (See [1], [2], and [4].) This function d_2 is closely related to metric dimension, denoted μ dim, where μ dim (X, ρ) is the smallest integer n such that for every $\epsilon > 0$ there exists an open cover of X of mesh $< \epsilon$ and order $\le n + 1$. In [6] it is shown that $d_2(X, \rho) \le \mu$ dim (X, ρ) , and for every integer $n \ge 2$ an example X_n is constructed such that $d_2(X_n, \rho) = [n/2] < \mu$ dim $(X, \rho) = n$. Now Katetov [3] has shown that 2μ dim $(X, \rho) \ge \dim X$ (covering dimension). The purpose of the present paper is to prove this same result for d_2 .

Theorem. For every non-vacuous metric space (X, ρ) , $2d_2(X, \rho) \geq \dim X$.

- 2. Intuitive guide to the proof. Let (X, ρ) be a fixed non-vacuous metric space, set $d_2(X, \rho) = k$ (there is nothing to prove if $d_2(X, \rho) = \infty$), and let C_1 , C_1' ; \cdots ; C_{2k+1} , C_{2k+1}' be 2k+1 pairs of closed sets with $C_i \cap C_i' = \emptyset$. The aim is to prove dim $X \leq 2k$ by finding closed sets B_1 , \cdots , B_{2k+1} such that B_i separates C_i from C_i' , and $\bigcap_{i=1}^{2k+1} B_i = \emptyset$ —the Eilenberg-Otto characterization. To apply our hypothesis that $d_2(X, \rho) = k$ we need sets C_i^* , $C_i'^*$ at positive distance, and the function α (§3) leads to a breakdown $C_i = \bigcup_{i=1}^{\infty} C_{ii}$ and $C_i' = \bigcup_{i=1}^{\infty} C_{ii}'$ such that $\rho(C_{ii}, C_{ii}') > 0$ for every i and j. It would be appreciably easier to prove that $2d_2(X, \rho) + 1 \geq \dim X$, because in that case we would have 2k+2 (= 2(k+1)) pairs C_i , C_i' . In the actual case a pair of level surfaces of the function α serves as the (2k+2)-th pair, in some applications of the hypothesis.
- 3. The function α , sets D_i , M_i and F_i . We want to have a real function $\alpha: X \to (0, \infty)$, such that for every $\epsilon > 0$, in the space $X_{\epsilon} = \{x: \alpha(x) \geq \epsilon\}$

Received March 6, 1969. Presented to the American Mathematical Society in February, 1969, Abstract 69T-G71. The author thanks the National Science Foundation for early support of research in the area of this paper.