FREE ACTIONS OF Z_4 ON S^3

By P. M. RICE

Introduction. In [1], G. R. Livesay proves that every fixed-point-free homeomorphism on S^3 with period 2 is equivalent to the antipodal map. The object of this paper is to prove the

THEOREM. Every free action of Z_4 on S^3 is equivalent to the orthogonal action.

 Z_4 is the cyclic group of order 4 and to say that it acts freely on S^3 means that each $g \in Z_4$ is a fixed-point-free homeomorphism of S^3 . This theorem characterizes those 3-manifolds which have S^3 as universal covering space and Z_4 as fundamental group.

Equivariant general position.

LEMMA. If the finite group G acts freely and simplicially on the closed, combinatorial manifold M and P is a subpolyhedron of M invariant under a subgroup H of G, then there is an arbitrarily small isotopy of M which takes P onto Q such that for each $g \in G/H$, Q is in general position with respect to g(Q). Moreover, Q is invariant under H.

This is probably well known. The proof consists of using general position isotopies in small neighborhoods, and copying that isotopy in the images of those neighborhoods under G. An equivariant subdivision may be necessary at the beginning.

Proof of the theorem. Since Z_4 acts freely on S^3 , S^3/Z_4 is a closed manifold and S^3 is its universal covering space. S^3/Z_4 may be triangulated and this triangulation lifted to S^3 . The action of Z_4 on S^3 is the deck transformation of the covering space, and hence is simplicial. Let $T \in Z_4$ be a generator. Then T^2 is an involution of S^3 without fixed points and is, by [1], equivalent to the antipodal map. It will be assumed, therefore, that T_2 is the antipodal map. Let S be a locally flat, polyhedral 2-sphere in S^3 invariant under T^2 . By the lemma, it is assumed that S is in general position with respect to TS. Then $S \cap TS$ is a collection $C = C_1 \cup \cdots \cup C_n$ of disjoint simple closed curves. $n \neq 0$ by the following argument: Let E^+ and E^- be the closed complimentary domains of S in S^3 . n = 0 means $TS \subset \text{int } E^+$ or $TS \subset \text{int } E^-$. If $TS \subset \text{int } E^+$ then $TE^+ \subset \text{int } E^+$ or $TE^- \subset \text{int } E^+$. $TE^+ \subset \text{int } E^-$ implies $T^2E^- = E^+ \subset$ $T(\text{int } E^+)$, so $TE^- \subset T(\text{int } E^+)$ so $E^- \subset \text{int } E^+$, which is also a contradiction. Similarly TS cannot be contained in $\text{int } E^-$, therefore $S \cap TS \neq \emptyset$. C divides

Received February 20, 1968. This research supported by NSF Contract GP 66016.