ENUMERATION OF PERMUTATIONS OF $(1, \dots, n)$ BY NUMBER OF MAXIMA

BY R. C. ENTRINGER

In this paper we are interested in counting the number of permutations of $(1, \dots, n)$ of which k entries a_i satisfy $a_i > a_{i-1}$, $a_i > a_{i+1}$. We consider the circular problem, i.e., $a_0 = a_n$, $a_{n+1} = a_1$. For example the permutation (6, 3, 2, 5, 1, 7, 4) has three maxima, namely 6, 5 and 7.

We first obtain a recurrence relation for M(n, k), the number of permutations of $(1, \dots, n)$ with k maxima. This recurrence relation leads to a partial differential equation whose solution provides a generating function for M(n, k). This solution is then expanded into a power series from which an explicit formula for M(n, k) is obtained.

Throughout the paper we follow the usual convention that $\binom{a}{b} = 0$ if b < 0 or $0 \le a < b$. Also *n* will always be positive.

A sequence (a_1, \dots, a_n) will be called an *n*-permutation if and only if it is a permutation of $(1, \dots, n)$.

A sequence (a_1, \dots, a_{n+1}) will be called an *extension* of an *n*-permutation if and only if (a_1, \dots, a_n) is an *n*-permutation and $a_{n+1} = n + 1$. For future use we note each (n + 1)-permutation may be obtained in exactly one way as a cyclic permutation of an extension of an *n*-permutation.

A member a_i , $i = 1, \dots, n$ of an *n*-permutation is a maximum if and only if $a_i > \max(a_{i-1}, a_{i+1})$ where $a_0 = a_n$ and $a_{n+1} = a_1$. $M(n, k), n \ge 1$, will denote the number of *n*-permutations having exactly k maxima. For convenience we define M(1, 0) = 1 and M(n, 0) = 0 for $n \ge 2$.

We note the following properties of M(n, k) all of which are obvious:

i)
$$\sum_{k=0}^{n} M(n, k) = n!$$

ii) The number of maxima of an n-permutation is invariant under cyclic permutations.

iii) $M(n, k) \neq 0$ only if $n/2 \geq k \geq 1$ or n = 1 and k = 0.

LEMMA. M(n + 1, k) = (n + 1)/n[2kM(n, k) + (n - 2k + 2)M(n, k - 1)]for $n \ge 1, k \ge 1$.

Proof. From property ii) it follows that for fixed $i, 1 \le i \le n$, the number of *n*-permutations (a_1, \dots, a_n) with k maxima one of which is a_i is (k/n)M(n, k). Now each (n + 1)-permutation with k maxima is a cyclic permutation of an

Received December 26, 1967.