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In this paper we are interested in counting the number of permutations
of (1, n) of which k entries as satisfy as > a-i, a, > a,/. We consider
the circular problem, i.e., ao a, a+ as. For example the permutation
(6, 3, 2, 5, 1, 7, 4) has three maxima, namely 6, 5 and 7.
We first obtain a recurrence relation for M(n, k), the number of permutations

of (1, n) with k maxima. This recurrence relation leads to a partial
differential equation whose solution provides a generating function for M(n, ).
This solution is then expanded into a power series from which an explicit formula
for M(n, ) is obtained.

Throughout the paper we follow the usual convention that/)=0 if b <: 0

or 0

_
a < b. Also n will always be positive.

A sequence (a a.) will be called an n-permutation if and only if it is
a permutation of (1, n).
A sequence (al a./) will be called an extension of an n-permutation

if and only if (a, a.) is an n-permutation and a./l n - 1. For future
use we note each (n -t- 1)-permutation may be obtained in exactly one way
as a cyclic permutation of an extension of an n-permutation.
A member as, i 1, n of an n-permutation is a maximum if and only if

a, > max (a,_ a,/) whereao aanda,,/ al M(n, k), n

_
1, will

denote the number of n-permutations having exactly k maxima. For con-
venience we define M(1, 0) 1 and M(n, O) 0 for n >_ 2.
We note the I ollowing properties of M(n, k) all of which are obvious:

i) M(n, k) n!
k-0

ii) The number of maxima of an n-permutation is invariant under cyclic
permutations.

iii) M(n,k,) Oonlyifn/2_> k >_ lorn landk-- O.

LEMMA. M(n - 1, k) (n T 1)/n[2kM(n, k) - (n- 2 -t- 2)M(n, k- 1)]
]orn >_ 1, k >_ 1.

Proo]. From property ii) it follows that for fixed i, 1

_
i

_
n, the number

of n-permutations (as, a,) with k maxima one of which is a, is (k/n)M(n, k).
Now each (n -t- 1)-permutation with k maxima is a cyclic permutation of an
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