HAAR POLYNOMIALS ON CARTESIAN PRODUCT SPACES

By M. S. Grosof and D. J. Newman

Introduction. The purpose of this paper is to generalize some of the results contained in *Some Theorems on Čebyšev Approximation*, by D. J. Newman and H. S. Shapiro [3]. The notation is that of [3]. The contents form part of the first author's doctoral dissertation at Yeshiva University, under the supervision of Professor Newman. The dissertation title is *Approximation to Separated Functions on Cartesian Product Spaces*.

1. In [3], Newman and Shapiro are concerned primarily with uniqueness questions arising from Čebyšev approximation on Cartesian product spaces by ordinary polynomials in x_1, \dots, x_k to functions of form $\sum_{i=1}^{k} F_i(x_i)$.

DEFINITION. A family $\{\varphi^{u}(x)\}_{u=0,1,\dots}$ of continuous real-valued functions on some compact set X is a Haar sequence or satisfies the Haar condition if: for any $J \ge 0$, any linear combination $\sum_{u=0}^{J} c_u \varphi^{u}(x)$ with c_u real and not all zero, has at most J zeros in X. (A Haar sequence is defined in [2; 67 et seq], in which such a family is called a *Tchebycheff system with respect to X*.) Equivalently: $\sum_{u=0}^{J} c_u \varphi^{u}(x) = 0$ for $x = \xi^1, \xi^2, \dots, \xi^{J+1}$ distinct points of X implies

$$c_u = 0$$
 all $u = 0, \cdots, J$.

Approximation by linear combinations of such $\varphi^{u}(x)$ are of special interest because it is well known [5; 87ff] that the Haar condition is necessary for the uniqueness of the best approximation even for functions of one variable.

DEFINITION. If $\{\varphi^{u}(x)\}_{u=0}$ is a Haar sequence, a Haar polynomial (abbrev. H.p.) is any expression of the form $\sum_{u=0}^{J} c_{u}\varphi^{u}(x)$. The degree of $\sum_{u=0}^{J} c_{u}\varphi^{u}(x)$ is the largest u for which $c_{u} \neq 0$.

Thus, a H.p. of degree d has at most d distinct zeros; and if two H.p. of degree $\leq d$ agree at d + 1 points, they are identical.

Assume $\{\varphi^{u}(x)\}_{u=0,\dots}$ is a Haar sequence on X. The proofs of the following Lemmas are immediate, by standard theorems on existence and uniqueness of solutions to systems of linear equations. [1; ch. II].

LEMMA 1.1. If ξ^1, \dots, ξ^{J+1} are distinct values of x, then

$$\begin{vmatrix} \varphi^0(\xi^1) & \varphi^1(\xi^1) & \cdots & \varphi^J(\xi^1) \\ \vdots & \vdots & & \vdots \\ \varphi^0(\xi^{J+1}) & \varphi^1(\xi^{J+1}), & \cdots & \varphi^J(\xi^{J+1}) \end{vmatrix} \neq 0.$$

Received August 21, 1967; in revised form February 20, 1968. Research supported in part under N. S. F. Summer Fellowships for Graduate Teaching Assistants (1964 and 1965), and N. S. G. Grant GP 4391.