CLOSED SUBALGEBRAS OF $L^{1}(T)$

BY DANIEL RIDER

1. Introduction. If T is the circle group then $L^{1}(T)$ is a Banach algebra where the multiplication is given by convolution. ||f|| and \hat{f} will denote the norm and Fourier transform of a function in $L^{1}(T)$. If A is a closed subalgebra of $L^{1}(T)$ then A determines an equivalence relation, R_{A} , on the integers by $n \sim m$ if $\hat{f}(n) = \hat{f}(m)$ for all $f \in A$. R_{A} has one possibly infinite equivalence class, E_{0} , consisting of all n such that $\hat{f}(n) = 0$ for all $f \in A$. The other classes, denoted by E_{i} , are finite.

Conversely if R is an equivalence relation on the integers with at most one infinite equivalence class, there is a closed subalgebra A such that $R_A = R$. There are two obvious candidates for this: B^R , consisting of the $f \in L^1(T)$ such that \hat{f} is constant on the classes of R and 0 on E_0 ; and B_R , the closed subalgebra generated by the polynomials I_i such that \hat{I}_i is the characteristic function of E_i $(j \neq 0)$.

Rudin, [6; 231], has shown that if A is a closed subalgebra with $R_A = R$, then

$$B_{\mathbb{R}} \subset A \subset B^{\mathbb{R}}.$$

Kahane, [2] and [3], has constructed an example where $B_R \neq B^R$. This is equivalent to saying that the algebra B^R is not generated by its idempotents; i.e., there is $f \in B^R$ such that the Fourier series for f can be written

$$f(t) \sim \sum_{i} a_{i} I_{i}(t),$$

but f cannot be approximated in $L^{1}(T)$ by polynomials of the form

$$g(t) = \sum_i b_i I_i(t).$$

It can be shown that the particular functions, as above, which Kahane constructs are not in $L^{p}(T)$ if p > 1. In this paper we shall construct an example as follows:

Example A. There is an equivalence relation R on the integers and a function f such that:

(a) $f \in \bigcap_{r < 2} L^{r}(T)$ (b) $f \in B^{R}$ but $f \notin B_{R}$.

Received August 11, 1967. This research was supported in part by National Science Foundation Grant GP-5493.