ASYMPTOTIC FORMULAE FOR POINT LATTICES OF BOUNDED DETERMINANT AND SUBSPACES OF BOUNDED HEIGHT

BY WOLFGANG M. SCHMIDT

1. Introduction. We are going to study point lattices Λ^k in a Euclidean space E^n . By definition, a k-dimensional point lattice Λ^k $(0 \le k \le n)$ is a discrete subgroup of the additive group of E^n , which spans a k-dimensional subspace E^k of E^n . Usually only lattices Λ^n of E^n are studied, and their determinant $d(\Lambda^n)$ is well defined. In the general case, if $k \ge 1$, $d(\Lambda^k)$ is simply defined as the determinant of Λ^k considered as a lattice in its space E^k . Set $d(\Lambda^0) = 1$.

Now assume a Cartesian coordinate system in E^n to be given. Let Γ_0^n be the fundamental lattice of E^n , i.e. the lattice of vectors with integral coordinates. Lattices contained in Γ_0^n will be called *integral lattices* and denoted by Γ , Γ^k , Δ , \cdots ; general lattices will be denoted by Λ , Λ^k , \cdots . A lattice Γ^k is called *primitive* if there is no lattice Γ^{*k} of dimension k properly containing Γ^k . This generalizes the notion of a primitive lattice point.

There is a 1-1 correspondence between k-dimensional subspaces $S^k \subset E^n$ defined over the rationals (defined by linear equations with rational coefficients) and primitive lattices Γ^k . Namely, S^k contains a unique primitive lattice Γ^k , and Γ^k spans S^k . The height of S^k is defined by $H(S^k) = d(\Gamma^k)$. This is a special case of the definition given in [6] for the height of subspaces defined over an algebraic number field.

Write L(n, k, H) for the number of lattices Γ^k of E^n of determinant $\leq H$, P(n, k, H) for the number of primitive lattices Γ^k of E^n of determinant $\leq H$. P(n, k, H) may also be interpreted as the number of rational subspaces S^k of E^n whose height does not exceed H. V(l) where $l = 1, 2, \cdots$ will mean the volume of the unit-ball in E^l , ζ the Riemann zeta-function.

THEOREM 1. For fixed k, n, $1 \le k \le n - 1$,

(1)
$$P(n, k, H) = a(n, k)H^{n} + O(H^{n-b(n,k)})$$

where

(2)
$$a(n, k) = \frac{1}{n} {\binom{n}{k}} \frac{V(n)V(n-1)\cdots V(n-k+1)}{V(1)V(2)\cdots V(k)} \cdot \frac{\zeta(2)\zeta(3)\cdots \zeta(k)}{\zeta(n)\zeta(n-1)\cdots \zeta(n-k+1)}$$

(the empty product $\zeta(2) \cdots \zeta(k)$ for k = 1 should mean 1), and where

Received July 25, 1966. This paper was written with partial support of the National Science Foundation Grant No. NSF-GP-2542.