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1. Introduction. Let X and Y each denote the closed unit interval, and
let (X) Y be a continuous function. A mapping g is said to be range-equiv-
alent to (-equivalent, or simply g (R),) if there exists an order-preserving
homeomorphim of Y onto itself such that g o . In [2], the author has
characterized the R-equivalence classes of C functions. Here we consider
various other R-equivalence classes, leading to a characterization of the -equivalence class of absolutely continuous functions.

2. Preliminaries.

2.1. We shall denote by m the Lebesgue measure on the real line.

2.2. If is a function from X into Y, and y Y, then ]-l(y) will denote the
set of all x e X such that ](x) y.

2.3. Let ](X) Y be a mapping. Denote by s the "counting" function
on Y; i.e.

(2.3-1) s(y) "number of points (finite or infinite) in ]-l(y),,. By [3;
IX, Theorem 6.4], s is a measurable function. We shall also define a counting
function S on the domain X; i.e., for all x X, we define

(2.3-2) S(x) s(](x)).

It is not hard to verify that Sf is also a measurable function.

2.4. The following theorem is due to Nina Bary [1; 635, Theorem III].

THEOREM 1. Let ](X) Y be a continuous ]unction. In order ]or ] to b
R-equivalent to a ]unction o] bounded variation it is necessary and sucient that
every open interval J C Y intersect the set o/points on which sf is finite in an
uncountable set.

2.5. A function ] is said to satisfy Lusin’s condition (N) if ] takes sets of
measure zero into sets of measure zero. This condition plays a fundamental
role in the theory of absolutely continuous functions. Every AC function
satisfies condition N; the converse is generally false. If however ] is a continuous
function of bounded variation defined on a compact set, then the fact that ]
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