ON THE MEAN VALUE OF HAAR MEASURABLE ALMOST
PERIODIC FUNCTIONS

By Hexry W. Davis

1. Introduction. Harald Bohr showed [1; 45] that the mean value of a con-
tinuous complex-valued almost periodic function on the real line is given by
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uniformly in real numbers a. We are concerned with generalizing this formula
to Haar measurable complex-valued von Neumann almost periodic functions
defined on a locally compact topological group. Such functions are necessarily
continuous, in fact, (left and right) uniformly continuous.

By an LC group we mean a locally compact T,-topological group. If G is
an LC group, let a(G) denote the continuous almost periodic functions on G
and p be a left Haar measure on the Borel sets of G (i.e., u is defined on the
o-algebra generated by the closed sets of G). In 1943 Kawada [6] showed
that if G is a connected abelian LC group, then there is a sequence {U,};., of
subsets of @ such that

(1) each U, is bounded (i.e., U, is compact) and open,

(2) UlCU'zC"‘y
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He remarked that the same result holds for every connected LC group G such
that «(Q@) separates points by virtue of the Freudenthal-Weil structure theorem
for such groups [2]; [9; 126-129]. In 1948 Lyubarskii [7] proved the same
result as Kawada by a more direct method. In 1963 Hewitt and Ross
[5, 18.11-18.14] showed that if G is any o-compact abelian LC group, then
there is a sequence { U, } ., of subsets of G satisfying (1), - - - , (4). The methods
of proof used above depend on the fact that there exists a sequence {A4,},_, of
measurable subsets of positive finite measure in @ such that
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