FACTORIZATION IN QUADRATIC RINGS

BY HUBERT S. BUTTS AND GORDON PALL

1. Introduction. In this paper we consider the problem of determining the number of factorizations of an ideal in a ring with unity in a quadratic number field as a product of two ideals with given norms, and we also consider the same problem for algebraic integers of the ring rather than ideals (questions of a related nature are considered in [4] and [1]). Denote by R the field of rational numbers, by Z the ring of rational integers, by Δ a nonsquare element of Z such that $\Delta \equiv 0$ or 1 (mod 4), and set $\omega = (\epsilon + \sqrt{\Delta})/2$ ($\epsilon = 0$ or 1 according as Δ is even or odd). Let K denote the field $R(\sqrt{\Delta}), D_{\Delta} = \{a + b\omega \mid a, d\}$ b in Z, and denote by D the set of algebraic integers in K. Let s be the largest rational integer such that $\Delta_0 = \Delta/s^2$ is an integer $\equiv 0$ or 1 (mod 4). The principal ideal sD is called the conductor of the domain D_{Δ} —it is the g.c.d. of the set of ideals in D_{Δ} which are also ideals in D. If A and B are ideals in D_{Δ} , then the ideal $A + B = \{\alpha + \beta \mid \alpha \text{ in } A, \beta \text{ in } B\}$ is the g.c.d. of A and B. An ideal A in D_{Δ} is said to be prime to the conductor, or briefly, s-prime, if $A + sD = D_{\Delta}$ [2; 129] and [6; 351]. If A is an ideal in D_{Δ} , then \overline{A} denotes the ideal $\{\bar{\alpha} \mid \alpha \in A\}$ where $\bar{\alpha}$ denotes the quadratic conjugate of α . For s-prime ideals $N(A) = A\overline{A}$ is a principal ideal (a), where a can be taken to be the positive rational integer which gives the number of residue classes of D_{Δ} modulo A. Furthermore, for s-prime ideals, N(AB) = N(A)N(B), $\overline{AB} = \overline{A} \cdot \overline{B}$, $\overline{A+B} = \overline{A} + \overline{B}$, and if $A \supset B$, then there is an ideal C such that AC = B. The largest rational integer d such that A = (d)A' with A' an ideal in D_{Δ} is called the *divisor of A*. If A is s-prime, and A = BC, then B and C are s-prime.

2. Factorization of ideals in D_{Δ} . The main result is Theorem 1.

LEMMA 1. Let A be s-prime, $A \neq (0)$, N(A) = (bc) where b and c are positive rational integers. Let d denote the divisor of A and set e = (d, b, c). Then if $c \in A$ the number of factorizations

(1)
$$A = BC$$
, with $N(B) = (b)$ and $N(C) = (c)$,

is equal to the number of ideals H such that N(H) = (e).

Proof. We prove that if $c \in A$, then e = b. Indeed, if $c \in A$, then there exists an ideal Q such that AQ = (c) and therefore

$$A\bar{A} = (b)(c) = (b)AQ, \quad \bar{A} = (b)Q, \quad A = (b)\bar{Q}.$$

It follows that $(c) \subset A \subset (b)$, $b \mid c, b \mid d$, and e = b.

Received May 9, 1966. This work was supported in part by National Science Foundation grants GP 6467 and GP 3956.