FACTORIZATION IN QUADRATIC RINGS

BY HUBERT S. BUTTS AND GORDON PALL

1. Introduction. In this paper we consider the problem of determining the number of factorizations of an ideal in a ring with unity in a quadratic number field as a product of two ideals with given norms, and we also consider the same problem for algebraic integers of the ring rather than ideals (questions of a related nature are considered in $[4]$ and $[1]$). Denote by R the field of rational numbers, by Z the ring of rational integers, by Δ a nonsquare element of Z such that $\Delta = 0$ or 1 (mod 4), and set $\omega = (\epsilon + \sqrt{\Delta})/2$ ($\epsilon = 0$ or 1 according as Δ is even or odd). Let K denote the field $R(\sqrt{\Delta})$, $D_{\Delta} = \{a + b\omega \mid a, b \in \mathbb{Z}\}$, and denote by D the set of algebraic integers i cording as Δ is even or odd). Let K denote the field $R(\sqrt{\Delta})$, $D_{\Delta} = \{a + b\omega \mid a,$ b in Z }, and denote by D the set of algebraic integers in K . Let s be the largest rational integer such that $\Delta_0 = \Delta/s^2$ is an integer = 0 or 1 (mod 4). The principal ideal sD is called the conductor of the domain D_{Δ} -it is the g.c.d. of the set of ideals in D_{Δ} which are also ideals in D. If A and B are ideals in D_{Δ} , then the ideal $A + B = {\alpha + \beta | \alpha \text{ in } A, \beta \text{ in } B}$ is the g.c.d. of A and B. D_{Δ} , then the ideal $A + B = {\alpha + \beta | \alpha \text{ in } A, \beta \text{ in } B}$ is the g.c.d. of A and B.
An ideal A in D_{Δ} is said to be prime to the conductor, or briefly, s-prime, if
 $A + sD = D_{\Delta}$ [2; 129] and [6; 351]. If A is an ideal in $A + sD = D_{\Delta}$ [2; 129] and [6; 351]. If A is an ideal in D_{Δ} , then \overline{A} denotes the ideal $\{\bar{\alpha} \mid \alpha \in A\}$ where $\bar{\alpha}$ denotes the quadratic conjugate of α . For s-prime ideals $N(A) = A\overline{A}$ is a principal ideal (a), where a can be taken to be the positive rational integer which gives the number of residue classes of $D_{\mathbf{\Delta}}$ modulo A. Furthermore, for s-prime ideals, $N(AB) = N(A)N(B)$, $\overline{AB} = \overline{A} \cdot \overline{B}$, $\overline{A + B} = \overline{A} + \overline{B}$, and if $A \supset B$, then there is an ideal C such that $AC = B$. The largest rational integer d such that $A = (d)A'$ with A' an ideal in D_A is called the *divisor* of A. If A is s-prime, and $A = BC$, then B and C are s-prime.

2. Factorization of ideals in D_{Δ} . The main result is Theorem 1.

LEMMA 1. Let A be s-prime, $A \neq (0)$, $N(A) = (bc)$ where b and c are positive rational integers. Let d denote the divisor of A and set $e = (d, b, c)$. Then if $c \in A$ the number of factorizations

(1)
$$
A = BC
$$
, with $N(B) = (b)$ and $N(C) = (c)$,

is equal to the number of ideals H such that $N(H) = (e)$.

Proof. We prove that if $c \in A$, then $e = b$. Indeed, if $c \in A$, then there exists an ideal Q such that $AQ = (c)$ and therefore

$$
A\bar{A} = (b)(c) = (b)AQ
$$
, $\bar{A} = (b)Q$, $A = (b)\bar{Q}$.

It follows that $(c) \subset A \subset (b), b \mid c, b \mid d$, and $e = b$.

Received May 9, 1966. This work was supported in part by National Science Foundation grants GP ⁶⁴⁶⁷ and GP 3956.