EXTENSION OF FENCHEL’S DUALITY
THEOREM FOR CONVEX FUNCTIONS

By R. T. ROCKAFELLAR

1. Introduction. Let E be a locally convex Hausdorff topological vector
space over the real numbers R with dual E*. Let f be a proper convex func-
tion on E, i.e. an everywhere-defined function with values in (— o, 4+ «],
not identically -+ «, such that

@D fx4+ @ =Ny M@+ 0 =Nf@w) if 2eE, yeE, 0<\x<1.

Let g be a proper concave function on ¥ (i.e. —g¢ is proper convex). This paper
is concerned with characterizing the solutions and the extremum in the following
problem:

@ minimize f(z) — g(x) on E.

Many constrained, as well as unconstrained, extremum problems can be repre-
sented in the model form (I), because the functions are allowed to be infinite-

valued. For example, if D is a convex set in ¥ and g(xz) = 0 for z ¢ D,

g(x) = — o for x ¢ D, then (I) is essentially the same as minimizing f on D.
Closely associated with (I) is a “dual” problem of similar type,

(¢8)) maximize g*(x*) — *(z*) on E*,

where the concave function g* and the convex function f* are the conjugates
[2, 4, 7] of f and ¢ defined by

(1.2) f*@*) = sup {(z, 2*) — @},

(1.3) g*(@*) = inf {(z, 2*) — g(@)}

for each z* ¢ E*. It is immediate from (1.2) and (1.3) that

(1.4) flx) — glx) > g*(@*) — f*(@*) forall zel and 2z*eE*.

Problem (IT) was first introduced (in the finite-dimensional case, and in a
slightly different formulation) by Fenchel [5], who showed that (1.4) could often
be strengthened to

A) inf {{(z) — g(@)} = max {g*@*) — f*@)}.

Fenchel’s duality theorem [5; 108] asserts, namely, that (4) is true when £ = R",
if the relative interiors of the convex sets
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