A STRUCTURAL PROPERTY OF CERTAIN LOCALLY COMPACT ABELIAN GROUPS

By Edwin Hewitt

Let a be an integer > 1. A locally compact group G is said to be a-rich if for every neighborhood U of the identity e in G, the set $\{x^a : x \in U\}$ has positive [left] Haar measure. If G is not a-rich, we say that it is a-meager. The class of 2-rich G was introduced by Devinatz and Nussbaum in [1], and was used in studying real characters. In this note, we classify all a-rich locally compact Abelian groups.

Henceforward let G be a locally compact Abelian group. Let σ_a be the continuous endomorphism $x \to x^a$ of G. Write $G = R^n \times G_0$, where n is a nonnegative integer and G_0 is a locally compact Abelian group containing a compact open subgroup H (see [2, (24.30)]). Since $R^n \times H$ is an open subgroup of G and G is a divisible group, it is clear that G is a-rich if and only if G is a-rich.

Let λ be normalized Haar measure on H. Suppose that H is a-meager, and that $\lambda(\sigma_a(U^-)) = 0$ for some neighborhood U of e in H. Since H is compact, there is a finite subset $\{x_i\}_{i=1}^m$ of H such that

$$H = \bigcup_{i=1}^{m} x_i U = \bigcup_{i=1}^{m} x_i U^{-}.$$

Thus we have

$$\lambda(\sigma_a(H)) = \lambda \left(\bigcup_{j=1}^m \sigma_a(x_j) \sigma_a(U^-) \right) \leq \sum_{j=1}^m \lambda(\sigma_a(x_j) \sigma_a(U^-))$$

Hence H is a-rich if and only if the compact subgroup $\sigma_a(H)$ of H has positive Haar measure. This obviously occurs if and only if $H/\sigma_a(H)$ is finite.

The assertion that $H/\sigma_a(H)$ is finite is purely algebraic and can be described in terms of the algebraic structure of H, which is completely known (see [2, (25.25)]). The group H is isomorphic with

(1)
$$P_{p i P} [\Delta_p^{\mathfrak{e}_p} \times P_{i i I_p} Z(p^{r i})] \times \{ P^* Z(p^{\infty})^{\mathfrak{b}_p *} \times Q^{\mathfrak{n}^*} \}.$$

Here Q is the additive rationals, P is the set of prime positive integers, $Z(p^{\circ})$ is the p° -group, $Z(p^{\circ})$ is the cyclic group of order p° [r a positive integer], and Δ_{p} is the p-adic integers. The symbol P^{*} is a weak direct product and P is a complete direct product. The cardinal numbers δ_{p} and \mathfrak{n} are subject to certain conditions of no present interest. The cardinal numbers \mathfrak{a}_{p} are arbitrary. The

Received November 22, 1963. This research was supported in part by the National Science Foundation, under Grant No. GP-2112.