A STRUCTURAL PROPERTY OF CERTAIN LOCALLY COMPACT
ABELIAN GROUPS
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Let a be an integer > 1. A locally compact group G is said to be a-rich if
for every neighborhood U of the identity e in G, the set {z° : x & U} has positive
[left] Haar measure. If G is not a-rich, we say that it is a-meager. The class
of 2-rich G was introduced by Devinatz and Nussbaum in [1], and was used
in studying real characters. In this note, we classify all a-rich locally compact
Abelian groups.

Henceforward let G be a locally compact Abelian group. Let o, be the con-
tinuous endomorphism z — z* of G. Write G = R* X G, , where n is a non-
negative integer and @, is a locally compact Abelian group containing a compact
open subgroup H (see [2, (24.30)]). Since R™ X H is an open subgroup of G
and R" is a divisible group, it is clear that @ is a-rich if and only if H is a-rich.

Let X be normalized Haar measure on H. Suppose that H is a-meager, and
that N(¢,(U™)) = 0 for some neighborhood U of ¢ in H. Since H is compact,
there is a finite subset {x;}7., of H such that

H = Uin = Ux,'U—.
i=1 i=1

Thus we have

M) = (U 0o @) 5 35 Moo )

= 0.

Hence H is a-rich if and only if the compact subgroup ¢,(H) of H has positive
Haar measure. This obviously occurs if and only if H/e,(H) is finite.

The assertion that H/o,(H) is finite is purely algebraic and can be described
in terms of the algebraic structure of H, which is completely known (see [2,
(25.25)]). The group H is isomorphic with
@ P Ay X PZ(p™)] X {P*Z @) X Q"}.
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Here @ is the additive rationals, P is the set of prime positive integers, Z(p~)
is the p”-group, Z(p") is the cyclic group of order p” [r a positive integer], and
A, is the p-adic integers. The symbol P* is a weak direct product and P is a
complete direct product. The cardinal numbers b, and n are subject to certain
conditions of no present interest. The cardinal numbers a, are arbitrary. The
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