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1. Canonical forms. Consider the differential equation

(1.1) L[w] Aw + Bw, + Cw, + Dw + Ew,, 0

where A, E are real constants with A, B, C not all zero. If w is a solution,
and has a sufficient number of derivatives, then finite linear combinations
with constant coefficients"

(1.2) H[w] aDDw

are also solutions. Combinations (1.2) are thus solution-preserving (hererafter
abbreviated s.p.) for equation (1.1). It seems to have gone unnoticed that
there are also s.p. operators of form (1.2) where the coefficients a need not
be constants. It is such operators that are investigated here. This is done
by reducing (1.1) to certain "canonical" forms by means of suitable real,
non-singular linear transformations, and examining each such form separately

LEMMX 1.1. There exist real trans]ormations with constant coefficients:
(1.3) (x, y) --> (ax + by, cx + dy) (ad bc O)
that carry equation (1.1) into one o] the ]ollowing ]orms

(1.4) w w w O,

(.5) 0,

(1.6) w w 0 if B 4AC > 0;

(1.7) Aw + w 0 (A Laplace operator),

(1.8) Aw 0 /1 B- 4AC < 0;

(1.9) w w 0,

(.0) v 0,

(1.11) w w 0 i] B 4AC O.

Moreover no one o] equations (1.4) to (1.11) is reducible to another of these by a
real non-singular trans]ormation (1.3).

The proof is carried out by straightforward computations that we omit.
In each of the important cases (1.4), (1.7), (1.9) we shall show that all s.p.
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