RICCATI ALGEBRAS

By J. J. LEVIN* AND S. S. SHATZ

Introduction. In this paper we study an explicit class of algebras and the Jordan structure on them. They arose by applying a general construction due to Markus [7] to the real homogeneous matrix Riccati equation.

$$\frac{dX}{dt} = X \Gamma X,$$

where Γ is a given $m \times n$ matrix over R (the reals) and X is an $n \times m$ matrix. The Riccati equation is relevant to a number of problems in differential equations; a short bibliography may be found in [6].

In §1 we show that the (Markus) algebra associated with (0.1) is the algebra \mathfrak{R} of all $n \times m$ matrices over R with multiplication defined by

$$(0.2) A \cdot B = \frac{1}{2}(A \Gamma B + B \Gamma A) (A, B \varepsilon \Re).$$

With the above as motivation, we replace R by an arbitrary commutative, associative ring with unity, K, in which 2 is a unit and make the

DEFINITION. The associative algebra \mathfrak{A} over K, associated with the $m \times n$ matrix Γ , is the K-module of all $n \times m$ matrices over K with multiplication defined by

$$(0.3) A * B = A \Gamma B (A, B \varepsilon \Omega).$$

We denote by \mathfrak{A} the Jordan algebra \mathfrak{A}^+ [3] associated with \mathfrak{A} , so that \mathfrak{A} is the same K-module as \mathfrak{A} but with multiplication given by (0.2). Because of its origin, we refer to \mathfrak{A} as the Riccati algebra over K associated with Γ . If n=m and $\Gamma=E_n$ (the unit $n\times n$ matrix), then \mathfrak{A} reduces to the classical algebra of all $n\times n$ matrices over K and \mathfrak{A} becomes the classical Jordan algebra of all $n\times n$ matrices over K [1].

Jacobson [5] has considered the multiplications (0.2), (0.3) (for n = m = 3 with a particular Γ) for entirely different purposes.

If K is a field, much can be said about the structure of \mathfrak{A} . However, this is a considerably stronger hypothesis than is required to obtain detailed information. In §2 we introduce three weaker hypotheses (α) , (β) , (γ) which turn out to be very natural for the study of \mathfrak{A} and \mathfrak{A} . Then we discuss relations among them and investigate their relevance for the idempotent structure of \mathfrak{A} . For example, two of them become equivalent when K is a local noetherian ring. Also, if there exists a $Q \in \mathfrak{A}$ such that $\Gamma Q \Gamma = \Gamma$ (our hypothesis (β)),

Received September 15, 1962.

* MIT, Lincoln Laboratory. Operated with support from U. S. Army, Navy, and Air Force.