MODULARY GROUPS OF $t \times t$ MATRICES

By M. NEWMAN AND J. R. SMART

Introduction. In this note we undertake an initial investigation of the modulary groups $\mathfrak{M}(a,b)$ of $t\times t$ matrices. The determination of the structure of these groups is reduced to the case when a and b are each powers of the same prime p, and under certain conditions these are completely determined. In addition we prove some lemmas on the principal congruence subgroups of the $t\times t$ modular group which are of interest in themselves. Finally we mention an open question that we have not been able to settle.

Let Γ be the group of rational integral $t \times t$ matrices of determinant 1, $\Gamma(n)$ the principal congruence subgroup of Γ of level n. $\Gamma(n)$ consists of all matrices $A \in \Gamma$ satisfying $A \equiv I \pmod{n}$. Let m, n be positive integers and set

$$(m,n)=d, \qquad [m,n]=\delta.$$

LEMMA 1. Let $A \in \Gamma(d)$. Then X can be determined so that

$$(1) X \equiv I \pmod{m},$$

$$(2) X \equiv A \pmod{n},$$

$$\det X = 1.$$

Proof. Since $A \in \Gamma(d)$ we can write A = I + dB. Set X = I + mY. Then (1) is satisfied and (2) becomes

$$mY \equiv dB \pmod{n}$$
,

$$\frac{m}{d} Y \equiv B \pmod{\frac{n}{d}}.$$

Since (m/d, n/d) = 1, this has a solution Y. Hence there is an X_0 satisfying (1) and (2). Furthermore, det $X_0 \equiv 1 \pmod{m}$, det $X_0 \equiv \det A \equiv 1 \pmod{n}$, so that det $X_0 \equiv 1 \pmod{\delta}$. Now determine X so that $X \equiv X_0 \pmod{\delta}$, det X = 1 (see [2; 374]). Then this X satisfies the conditions of the lemma.

Lemma 1 now implies

LEMMA 2. Let $A \in \Gamma(d)$. Then B and C may be found such that $B \in \Gamma(m)$, $C \in \Gamma(n)$ and A = BC.

Proof. Determine X as in Lemma 1. Choose B = X, $C = X^{-1}A$.

Received May 8, 1962. The work of the first author was supported by the Office of Naval Research and that of the second author by a Postdoctoral Fellowship from the National Science Foundation.