AUTOMORPHISMS OF ABELIAN GROUPS INDUCED BY INVOLUTORY MATRICES, MODULO p>2

By Jack Levine and Robert R. Korfhage

1. Introduction. This paper is a continuation of a previous one [3] which treated the case of involutory matrices, mod 2. Here, the situation where the modulus is a prime p > 2 is discussed.

Let $G_{n,p}$ be an abelian group of order p^n and type $[1^n]$, and let $M_{n,p}$ be the set of all involutory $n \times n$ matrices, modulo p.

 $G_{n,p}$ is defined by the mapping

(1.1)
$$(\alpha_0, \alpha_1, \dots, \alpha_{n-1}) \to \sum_{i=0}^{n-1} \alpha_i p^{n-i-1},$$

where

$$(1.2) \qquad (\alpha_0, \alpha_1, \cdots, \alpha_{n-1}) \ \epsilon \ Z_n^n = Z_n \times Z_n \times \cdots \times Z_n, \ (n \text{ factors}),$$

 Z_p being the additive group of integers, mod p.

An automorphism μ^* on $G_{n,p}$ is defined by

$$\mu^*: \sum \alpha_i p^{n-i-1} \rightarrow \sum \beta_i p^{n-i-1},$$

where $\mu \in M_{n,p}$ determines an automorphism on \mathbb{Z}_p^n :

$$\mu$$
: $(\alpha_0, \alpha_1, \cdots, \alpha_{n-1}) \rightarrow (\beta_0, \beta_1, \cdots, \beta_{n-1}).$

Let $M_{n,p}^*$ denote the set of all automorphisms on $G_{n,p}$. Then $\mu^* \in M_{n,p}^*$. We refer to all such mappings μ^* as involutory mappings.

In [3] it was shown that the set of elements of $G_{n,p}$ which remain fixed under μ^* form a subgroup, F, of $G_{n,p}$.

In §2 we show the existence of another subgroup Z of $G_{n,p}$ whose elements are mapped into their negatives under μ^* , and such that $G_{n,p} = F \oplus Z$, $F \cap Z = \{0\}$. This is in contrast to the situation when p = 2, where there is no such group Z, but there is a subgroup $F' \subseteq F$ such that $\theta + \mu^*(\theta) \in F'$, where $\theta \in G_{n,p}$.

Based on the above expression for $G_{n,p}$ in terms of F and Z a formula for the total number of matrices in the set $M_{n,p}$ is obtained in §3, this being in agreement with the corresponding result of Hodges [2].

§4 considers groups of involutory automorphisms, and it is proved the maximum order of such a group is 2^n . In the case p=2 we had previously shown the existence of such groups of orders $\leq 2^{a^2}$, where $q \leq [n/2]$.

In §5 a method is outlined for the actual construction of involutory matrices of any order, mod p > 2, and in the last section a simplified method when p = 2 is explained. Another method for this construction had been given in [3].

Received March 19, 1962.