# A NOTE ON A PAPER OF GINSBURG 

By Oscar E. Lanford, III

Introduction. Let $P$ be a partially ordered system and let $S$ and $T$ be nonempty subsets of $P$. If, for every $p \varepsilon S$, there exists a $q \varepsilon T$ such that $q \geq p$, $T$ is said to be confinal in $S$. For every $p \varepsilon P$, we denote the set of successors of $p$ in $P$ by $A_{P}(p)$. If two partially ordered systems $P$ and $Q$ are order isomorphic with confinal subsets of some partially ordered system, they are said to be confinally similar. A partially ordered system $P$ without maximal elements is said to have sufficiently many non-cofinal subsets if, for any two distinct elements $p$ and $q$ of $P$, either $A_{P}(p)$ is not cofinal in $A_{P}(q)$ or $A_{P}(q)$ is not cofinal in $A_{P}(p)$. The properties of sets having sufficiently many non-cofinal subsets have been investigated by Ginsburg [1], who poses the following question: "If $P$ has sufficiently many non-cofinal subsets and $Q$ is cofinally similar to $P$, does $Q$ contain a cofinal subset $S$ which has sufficiently many non-cofinal subsets?" It will be shown by example that the answer to this question is negative.

A subset $S$ of a partially ordered system $P$ is said to be a residual subset if, for every $p \varepsilon S, A_{P}(p)$ is contained in $S$. A subset $S$ of $P$ is said to be maximal residual if $S$ is a residual subset which is not a proper cofinal subset of any residual subset of $P$. The set of maximal residual subsets of $P$, ordered by the dual of set inclusion, is denoted by $F(P)$. Ginsburg proves the following theorem (Theorem 5 of [1]): If $P$ has sufficiently many non-cofinal subsets, $P$ is cofinally similar to $F(P)$. It is shown that the proof given for this theorem is invalid, and a counterexample to the theorem is given.

1. An example. An example is to be given of two cofinally similar partially ordered systems, one of which has sufficiently many non-cofinal subsets and the other of which contains no cofinal subset having sufficiently many non-cofinal subsets.
Let $\omega_{1}$ be the first non-denumerable ordinal, and let $W\left(\omega_{1}\right)$ be the set of ordinals less than $\omega_{1}$. Associate with each $x \varepsilon W\left(\omega_{1}\right)$ an infinite subset $A_{x}$ of the set of integers in such a way that distinct ordinals are assigned distinct sets of integers. Now, for any finite set of integers $A$, one of the following two cases occurs:
i. For each $x \varepsilon W\left(\omega_{1}\right)$ there exists an $s \varepsilon W\left(\omega_{1}\right), s \geq x$, such that $A \subset A_{s}$. ii. For some $x \varepsilon W\left(\omega_{1}\right), A$ is not contained in $A_{s}$ for any $s \geq x$, while, for all $y<x$, there exists a $z \varepsilon W\left(\omega_{1}\right), z \geq y$, such that $A \subset A_{z}$.

We now consider the set of all $x$ 's associated with sets of integers in the second category. This is a denumerable set of denumerable ordinals; hence, there exists a denumerable ordinal $\omega^{\prime}$ which is greater than any of the ordinals

Received March 21, 1962. This work was supported by the National Science Foundation.

