TWO PROBLEMS OF HEWITT

By Doucras R. ANDERSON AND MARY POWDERLY

In this paper the solutions to two problems raised by Edwin Hewitt [1; 332,
11.28-32] are presented. We shall follow the terminology and notations used by
Hewitt.

TueoreM 1. If 7 18 an infinite cardinal number, there exists a T, space R with
A(R) = 7 such that no expansion S of R is a Hausdorff space with A(S) = A(R).

Proof. Let E be a set with cardinality » and T'(E) be the T, space defined
on E whose open sets are the empty set and subsets of E with finite complements.
Clearly A(T(E)) = 7. Hewitt [1, Theorem 13] has proved that there exists a
r-maximal expansion S* of T(E) which is necessarily a T, space. Let a be
any point in 8* and U, = {U(a)} be the set of all open neighborhoods of a in S*.

Now let & be any element not in E and let U = 0(S*) U {U(a) — {a} Y
{a} | U(a) € U,} be a set of subsets of E* = E \U {a}. If the sets U & U are now
defined to be open neighborhoods of each of the points they contain, it is clear
that A satisfies the first three neighborhood axioms of Hausdorff. Hence, U
defines a topological space B. It is easy to show that R is T, and that A(R) = 7.
Since every neighborhood of « intersects every neighborhood of a, B is not a
Hausdorff space.

Suppose there is a Hausdorff expansion S of R with A(S) = A(R). Then there
exist in S disjoint open neighborhoods G, H of a and « respectively. Let E,
considered as a subspace of R (or S) be designated by E (or Eg). Then since
E ¢0(S) and G C E, G ¢ 0(Es). From the above discussion it follows that E g
is an expansion of E; . But Ej is the space S*. Thus E; is an expansion of S*.
Furthermore A(Es) = 7 since A(S) = 7 and since the removal of one point does
not affect the cardinality of an infinite set. But since S* is 7-maximal, this means
that E is no proper expansion of S*. That is, that 0(Es) = 0(S*). In par-
ticular then, since G = O(E;), G ¢ 9(S*). Hence G ¢ U,. Since every non-empty
open set of S has cardinality 7, the cardinality of H M U(e) is 7. But U(a) =
U(a) — {a} Y {a} and since G ¢ U, there is some U,(a) = G — {a} U {a}.
Thus the cardinality of H N (G — {a} U {a}) is 7. Hence the cardinality of
H N @G is 7 since the addition or removal of a finite number of points does not
affect the cardinality of an infinite set. This contradiction completes the proof.

TueoreM 2. If 7 is an infinite cardinal number and R is a regular space with
A(R) = 7, there exists a completely regular space S which is an expansion of R with
A(S) = A(R).
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