THE WEIERSTRASS TRANSFORM AND HERMITE POLYNOMIALS

By G. G. BILODEAU

1. Introduction. The Weierstrass transform $f(x)$ of $\phi(y)$ is defined by

(1.1)
$$
f(x) = \int_{-\infty}^{+\infty} k(x - y, 1)\phi(y) dy
$$

where $k(x, t) = (4\pi t)^{-1/2}e^{-x^2/4t}$. In general we write $f(x) = W[\phi]$. Similarly we can define the Weierstrass-Stieltjes transform $f(x) = WS[\alpha]$ as

(1.2)
$$
f(x) = \int_{-\infty}^{+\infty} k(x - y, 1) d\alpha(y)
$$

where $\alpha(y)$ is assumed of BV in every finite interval. The basic properties of these transforms have been studied in detail in [5, Chapter VIII]. In particular it was observed that the operator e^{-D^2} , $D = d/dx$, suitably interpreted, will invert $f(x) = W[\phi]$. It is the purpose of this paper to study interpretations of this operator which make strong use of the properties of the Hermite polynomials defined by

$$
H_n(x) = (-1)^n e^{x^2} D^n e^{-x^2}.
$$

In §2, we add some new results to a familiar interpretation of e^{-D^2} in terms of series by considering the use of special summability methods. In \S , we introduce another interpretation which is intimately connected with the problem of the expansion of a function in Hermite series. In this way we are eventually led to a partial proof of a conjecture of Kogbetliantz [6; 169] on a Borel summability of Hermite Series.

2. The first interpretation. Define

(2.1)
$$
e^{-D^2}f(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} f^{(2k)}(x)
$$

whenever this series converges. The application of this operator to Weierstrass transforms was first mentioned by Eddington [2] and later studied by Hille [4] and Rooney [7]. We quote the following theorem, found in $[1; 12]$, which is a slight improvement over Rooney's result.

THEOREM 2.1. Let $\phi(x)$ be of BV in some neighborhood of x_o and let

(2.2)
$$
\left(\int_{-\infty}^{-a} + \int_{a}^{\infty}\right) y^{-1} k(x_0 - y, 2) \mid \phi(y) \mid dy
$$

Received April 14, 1961. This paper represents a part of the author's thesis written under the direction of Professor D. V. Widder at Harvard University 1959.