THE GEOMETRY OF FUNCTIONS HOLOMORPHIC IN THE UNIT CIRCLE, OF ARBITRARILY SLOW GROWTH, WHICH TEND TO INFINITY ON A SEQUENCE OF CURVES APPROACHING THE CIRCUMFERENCE

By G. R. MACLANE

1. Introduction. Let $\mu(r)$ be a given positive increasing function on [0, 1) with $\lim_{r \uparrow 1} \mu(r) = \infty$. It is well known that there exists a function $H(\zeta)$, holomorphic in $|\zeta| < 1$, whose maximum modulus M(r) satisfies

$$(1) M(r) \le \mu(r)$$

and is such that for an appropriate sequence $s_n \uparrow 1$

(2)
$$\min_{\substack{|\xi|=s_n\\ |\xi|=s_n}} |H(\xi)| \to \infty, \qquad n \to \infty.$$

Such functions may be constructed by the use of gap series, Lusin and Priwaloff [5]; MacLane [7], or via an infinite product, Bagemihl, Erdös, and Seidel [1]. The object, Theorem 2, of the present note is to construct such a function geometrically by starting with the Riemann surface S onto which $w = H(\zeta)$ maps $|\zeta| < 1$. The surface S is fairly simple and makes such functions $H(\zeta)$ seem less outlandish. The essence of the argument is in showing that S is hyperbolic and that (1) is satisfied. In place of (2) we shall obtain the following: There exists an expanding set of Jordan curves $C_n \subset \{|\zeta| < 1\}$, $n \geq 1$, where C_1 contains $\zeta = 0$ in its interior and C_{n+1} contains C_n in its interior, such that

(2a)
$$|H(\zeta)| = \rho_n$$
, $\zeta \in C_n$,

where $\{\rho_n\}_{1}^{\infty}$ is a sequence of constants satisfying

$$(3) 0 < \rho_n \uparrow \infty.$$

Now if this is the case, then for any $\epsilon > 0$ and $n > n_0(\epsilon)$, C_n must be contained in the annulus

$$1 - \epsilon < |\zeta| < 1$$

and separate $|\zeta| = 1 - \epsilon$ and $|\zeta| = 1$. If D_n is the interior of C_n and S_n is the corresponding part of S_n , then we observe that S_n is exhausted by a sequence of components, S_n , where S_n is a finite-sheeted unbordered covering of $|w| < \rho_n$. The method of construction is to commence with a whole class of such surfaces S_n and pick out one that is hyperbolic and such that (1) is satisfied. The principal tool used is the kernel theory of Carathéodory [3]; a more general exposition of kernels may be found in [6].

Received June 2, 1961. This research was supported by the United States Air Force Office of Scientific Research of the Air Research and Development Command, under Contract No. AF 49(638)205.