TWO COMBINATORIAL THEOREMS ON ARITHMETIC PROGRESSIONS

BY WOLFGANG M. SCHMIDT

1. Introduction. According to a well-known theorem of van der Waerden [6] there exists an $m(k, l)$ defined for integers $k \geq 2, l \geq 3$, such that if we split the integers between 1 and m into k classes, at least one class contains an arithmetic progression of l distinct elements. We shall prove

THEOREM 1. For some absolute constant $c > 0$,

$$
(1) \t\t\t\t m(k, l) \geq k^{l - c(l \log l)^{l}}
$$

For large l this is an improvement of the estimate

(2a)
$$
m(k, l) \geq [2(l-1)k^{l-1}]^{\frac{1}{2}}
$$

given by Erdös and Rado [2] and of the estimate

$$
(2b) \t\t\t m(k, l) \geq lk^{C \log k}
$$

of Moser [4].

Throughout, P, Q, \cdots will denote arithmetic progressions of l distinct integers between 1 and m. Consider real numbers α between 0 and 1 written in scale $k : \alpha = 0, \alpha_1 \alpha_2 \cdots$ Write $N(\alpha; k, l, m)$ for the number of progressions $P = \{p_1, \dots, p_l\}$ such that

$$
\alpha_{p_1}=\alpha_{p_2}=\cdots=\alpha_{p_l}.
$$

THEOREM 2. Keep k, l, $\epsilon > 0$ fixed. Then for almost every α ,

(3)
$$
N(\alpha; k, l, m) = m^2 \frac{k^{1-l}}{2(l-1)} + O(m \log^{3+\epsilon} m).
$$

2. The idea of the proof of Theorem 1. There is a 1-1 correspondence between divisions of 1, \cdots , m into classes C_1 , \cdots , C_k and functions $f(x)$ defined on 1, \cdots , *m* whose values are integers between 1 and *k*. We write

$$
f(\sigma) = j
$$

for a set σ of integers between 1 and m if $f(x) = j$ for every $x \in \sigma$. Put

 $P \mid f$

if $f(P)$ is defined, i.e., if $f(p_1) = \cdots = f(p_l)$ for the elements p_1, \cdots, p_l of P .
In this terminology Theorem 1 means that for $m \lt k^{l - o(l \log l)^{\frac{1}{l}}}$ there exists some f such that $P \mid f$ for no P.

Received May 19, 1961.