TWO COMBINATORIAL THEOREMS ON ARITHMETIC PROGRESSIONS

By Wolfgang M. Schmidt

1. Introduction. According to a well-known theorem of van der Waerden [6] there exists an m(k, l) defined for integers $k \ge 2, l \ge 3$, such that if we split the integers between 1 and m into k classes, at least one class contains an arithmetic progression of l distinct elements. We shall prove

THEOREM 1. For some absolute constant c > 0,

(1)
$$m(k, l) \geq k^{l-c(l \log l)}$$

For large l this is an improvement of the estimate

(2a)
$$m(k, l) \ge [2(l-1)k^{l-1}]^{\frac{1}{2}}$$

given by Erdös and Rado [2] and of the estimate

(2b)
$$m(k, l) \ge lk^{C \log k}$$

of Moser [4].

Throughout, P, Q, \cdots will denote arithmetic progressions of l distinct integers between 1 and m. Consider real numbers α between 0 and 1 written in scale $k : \alpha = 0, \alpha_1 \alpha_2 \cdots$. Write $N(\alpha; k, l, m)$ for the number of progressions $P = \{p_1, \cdots, p_l\}$ such that

$$\alpha_{p_1} = \alpha_{p_2} = \cdots = \alpha_{p_l} \, .$$

THEOREM 2. Keep k, l, $\epsilon > 0$ fixed. Then for almost every α ,

(3)
$$N(\alpha; k, l, m) = m^2 \frac{k^{1-l}}{2(l-1)} + O(m \log^{\frac{3}{2}+\epsilon} m).$$

2. The idea of the proof of Theorem 1. There is a 1-1 correspondence between divisions of $1, \dots, m$ into classes C_1, \dots, C_k and functions f(x) defined on $1, \dots, m$ whose values are integers between 1 and k. We write

$$f(\sigma) = j$$

for a set σ of integers between 1 and m if f(x) = j for every $x \in \sigma$. Put

 $P \mid f$

if f(P) is defined, i.e., if $f(p_1) = \cdots = f(p_l)$ for the elements p_1, \cdots, p_l of P. In this terminology Theorem 1 means that for $m < k^{l-o(l \log l)^{\frac{1}{2}}}$ there exists some f such that $P \mid f$ for no P.

Received May 19, 1961.