TEST SPACES FOR HOMOLOGICAL DIMENSION

By Yukihiro Kodama

- 1. **Introduction.** Let X be a topological space and G an Abelian group. Let us denote by D_* (X:G) the homological dimension of X with respect to G defined by means of Čech homology groups of pairs of closed subsets of X with coefficients in G. If we denote by dim X the covering dimension of X, it is obvious that D_* $(X:G) \leq \dim X$ for any space X and any group G. A topological space X is called *full-dimensional with respect to G* in case D_* $(X:G) = \dim X$. Then the following problem arises naturally:
 - (*) Siven an Abelian group G, what is a space which is full-dimensional with respect to the group G?

A topological space M is called a *test space with respect to* G if a compact space X is full-dimensional with respect to G if and only if dim $(X \times M) = \dim X + \dim M$. The object of this paper is to give an answer to the problem (*) for some important groups by constructing test spaces with respect to them.

A sequence $\mathfrak{a}=(q_1\,,q_2\,,\cdots)$ of positive integers is called a k-sequence if q_i is a divisor of q_{i+1} for each i and $q_i>1$ for some i (cf. [7; 385]). If $\mathfrak{a}=(q_1\,,q_2\,,\cdots)$ is a k-sequence, we have the inverse system of groups $\{Z_{a_i}:h_i^{i+1};i=1,2,\cdots\}$, where Z is the additive group of all integers, Z_q is the cyclic group with order q (=Z/qZ) and h_i^{i+1} is a natural homomorphism from $Z_{q_{i+1}}$ onto Z_{q_i} . By $Z(\mathfrak{a})$ we denote the limit group of $\{Z_{a_i}:h_i^{i+1}\}$. For a prime p we denote by \mathfrak{a}_p the k-sequence $(p,\,p^2,\,p^3,\,\cdots)$. Test spaces with respect to the group $Z(\mathfrak{a}_p)$, and generally with respect to the group $Z(\mathfrak{a})$, were constructed by Boltyanskii [1], [2] and the author [7], though they were not stated clearly. Let $Q(\mathfrak{a})$ be the Cantor manifold constructed in [7, §3] for any k-sequence \mathfrak{a} . The following theorem is proved by the same way as [7, Theorem].

THEOREM 1. The Cantor manifold $Q(\mathfrak{a})$ is a test space with respect to $Z(\mathfrak{a})$. We shall prove the following theorems.

Theorem 2. Let R be the additive group of all rational numbers. Then there exists a Cantor manifold M_0 which is a test space with respect to R.

Theorem 3. Let Q_p be the additive group of all rational numbers reduced mod 1 whose denominators are powers of a prime p. Then there exists a Cantor manifold M_p which is a test space with respect to Q_p .

As a consequence of Theorem 3, we obtain Dyer's theorem [4].

THEOREM 5. Let X and Y be compact spaces. If dim $(X \times Y) = \dim X +$ Received December 12, 1960.