THE LEXICOGRAPHIC PRODUCT OF GRAPHS

BY GERT SABIDUSSI

1. The automorphism group of the lexicographic product. The purpose of this section is to improve an earlier result [3] giving a necessary and sufficient condition under which the automorphism group of the lexicographic product of two graphs X, Y is equal to the wreath product ([1; 81]; [3, Definition 1]) of the groups of X and Y. Using the terminology and notation of [3] we have the following:

THEOREM 1. Let X be any graph with $E(X) \neq \Box$, and suppose that Y is such that $|V(Y; y) \cap V(Y; y')| < |Y|$ for any two distinct vertices y, y' of Y. Then a necessary and sufficient condition that $G(X) \circ G(Y) = G(X \circ Y)$ is that Y be connected if $R \neq \Delta$, and that Y' be connected if $S \neq \Delta$.

In [3], X and Y were assumed to be almost locally finite, and finite, respectively. Finite graphs trivially satisfy the condition that $|V(Y; y) \cap V(Y; y')| \le d(Y; y) < |Y|$.

The proof of Theorem 1 will be broken up into a sequence of lemmas. Note first that if X and Y satisfy the hypotheses of the theorem, then $X \circ Y$ is not isomorphic to Y. For if it were, then $|V(X \circ Y; (x, y)) \cap V(X \circ Y; (x, y'))| < |Y|$ for any $x \in X$, and distinct vertices $y, y' \in Y$. But if $d(X; x) \ge 1$, then

 $|V(X \circ Y; (x, y)) \cap V(X \circ Y; (x, y'))| \ge |V(X; x) \times V(Y)| \ge |Y|.$ It follows from this that if $|K_x| = 1$, then $\phi Y_x = Y_{x'}$ with $|K_{x'}| = 1$.

It therefore suffices to consider the case $|Y| \ge 2$, $|K_x| \ge 2$, and to prove that C_x is complete. Let c_1 , $c_2 \in C_x$, $y_i \in B_{c_i}$, i = 1, 2, and suppose that $\rho_X(c_1, c_2) = 2$. This assumption is made throughout the following sequence of lemmas.

LEMMA 1. Let A, B, C, M, N be sets such that |N| < |B|, and $A \times B = (C \times B) \cup M - N$, then $A \supset C$. If, moreover, |M| < |B|, then A = C.

This is obvious.

LEMMA 2. $V(X; t_y) \subset V(X; c_1) \cap V(X; c_2)$ for each $y \in Y$ with d(Y; y) < |Y|. *Proof.* Consider $W = V(X \circ Y; (x, y_1)) \cap V(X \circ Y; (x, y_2))$. Since $\rho_X(c_1, c_2) = 2$,

(1)
$$\phi W = (V(X;c_1) \cap V(X;c_2)) \times V(Y) \neq \square.$$

For W itself we obtain $W = (V(X; x) \times V(Y)) \cup D$, where

$$D = \{x\} \times (V(Y; y_1) \cap V(Y; y_2)).$$

Received December 20, 1960. Written with the support of the National Science Foundation, Grant No. NSF-G14084.