A CHARACTERIZATION IN E^3 OF THE EVERYWHERE REGULAR SOLUTION OF THE REDUCED WAVE EQUATION

BY O. G. OWENS

1. Introduction. In 1958 the author established [5] a theorem which asserts that there exists on E^2 , the Cartesian (x, y) -space, a unique solution of the 2-dimensional reduced wave equation for which the integral of the solution along the semi-infinite rays of a pencil of lines can be prescribed. In fact the following result was established.

THEOREM. There exists an everywhere defined unique C^2 solution on E^2 of the reduced wave equation

$$
(1.1) \qquad \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + u = 0 \qquad (x^2 + y^2 < \infty)
$$

for which uniformly in θ the

(1.2)
$$
\int_0^\infty u(x, y) \, dr = F(\theta) \qquad (x + iy = re^{i\theta})
$$

where the arbitrarily prescribed F is of period 2π and satisfies a uniform Hölder condition with exponent $\alpha > \frac{1}{2}$. Furthermore, the solution has the integral representation

$$
2\pi u(x, y) = \int_0^{2\pi} F(\phi) \cos(r \sin(\phi - \theta)) d\phi + \pi^{-1} \int_0^{2\pi} d\phi F(\phi) \int_0^{\pi/2} (1.3)
$$

sin (r sin (r + \phi - \theta)) + sin (r sin (r - \phi + \theta)) d\phi.
In this paper it is our intent, with respect to the 3-dimensional reduced wave

equation, to prove the following result.

THEOREM. There exists an everywhere defined unique C^2 solution on E^3 of the reduced wave equation

(1.4)
$$
\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} + u = 0 \qquad (x^2 + y^2 + z^2 < \infty)
$$

for which uniformly in (θ, ϕ) the

for which uniformly in (θ, ϕ) the

(1.5)
$$
\int_0^\infty r^{\frac{1}{2}} u(x, y, z) dr = F(\theta, \phi) \qquad (x + iy = r \sin \theta e^{i\phi}, \qquad z = r \cos \theta)
$$

Received March 12, 1959. This work was partiallj supported by the National Science Foundation, Contract No. G 6093.