A THEOREM ON SEMI-CONTINUOUS SET-VALUED FUNCTIONS

BY E. MICHAEL

1. Introduction. The purpose of this paper is to prove a rather curious result about semi-continuous set-valued functions (Theorem 1.1), and to derive some applications to open and closed point-valued functions.

Recall that if X and Y are topological spaces, and if 2^{Y} denotes the space of non-empty subsets of Y, then a function $\phi: X \to 2^{Y}$ is called *lower* (respectively *upper*) semi-continuous if

 $\{x \in X \mid \phi(x) \cap U \neq \emptyset\} \quad \text{(respectively} \quad \{x \in X \mid \phi(x) \subset U\})$

is open in X for every open $U \subset Y$. An important example is the case where ϕ is of the form $\phi = u^{-1}$ for some function u from Y onto X; in this case, ϕ is lower (respectively upper) semi-continuous if and only if u is open (respectively closed).

THEOREM 1.1. Let X be paracompact, Y a metric space, and $\phi: X \to 2^{Y}$ lower semi-continuous with each $\phi(x)$ complete. Then there exist $\psi: X \to 2^{Y}$ and $\theta: X \to 2^{Y}$ such that

(a) $\psi(x) \subset \theta(x) \subset \phi(x)$ for all $x \in X$,

(b) $\psi(x)$ and $\theta(x)$ are compact for all $x \in X$,

(c) ψ is lower semi-continuous,

(d) θ is upper semi-continuous.

COROLLARY 1.2. Let E be a metric space, F paracompact (Hausdorff will suffice in (b)), and $f: E \to F$ open and onto with $f^{-1}(y)$ complete for every $y \in F$. Then

(a) There exist subsets $E'' \subset E' \subset E$ such that f(E'') = f(E') = F, $f \mid E'$ is closed, $f \mid E''$ is open, and for each $y \in F$ the sets $(f \mid E')^{-1}(y)$ and $(f \mid E'')^{-1}(y)$ are compact.

(b) If $B \subset F$ is compact, then there exists a compact $A \subset E$ such that f(A) = B.

(c) If f is continuous, then F is metrizable.

Observe that Corollary 1.2. (b) generalizes a result of Bourbaki [1, §2, Proposition 18], where f is continuous, and E itself—rather than just the sets $f^{-1}(y)$ —is required to be complete.

It should be noted that the roles of open and closed maps in Corollary 1.2 (a) cannot be reversed. For instance, the map $f: [0,3] \rightarrow [0,2]$, defined by f(x) = x if $0 \le x \le 1$, f(x) = 1 if $1 \le x \le 2$, and f(x) = x - 1 if $2 \le x \le 3$, is continuous and closed, but there exists no $A \subset [0, 3]$ such that f(A) = [0, 2] and $f \mid A$ is open.

The proof of Theorem 1.1 will be found in §§2 and 3; the lemma in §2 may

Received December 16, 1958. This work was supported by the Office of Naval Research under Contract Nonr 477(21), Project Number NR 043 207.