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1. Introduction. Let Q[O, 1] denote the class of all reul-valued functions
defined on the set of real numbers such that (1) (x) 0(x _< 0) and (x)

(1)(x > 1), (2) is quasicontinuous on [0, 1] and (3) (x) 1/2[(x -t-) + (x -)]
(0 < x < 1). If Q[0, 1], condition (2) means that possesses discontinuities
of the first kind only while condition (3) states that is normalized at
x(0 < x < 1). A sequence {a.} of real numbers is a Q-sequence means there
exists a mass function Q[0, 1] such that

(1.1) a Jo x de(x) (n 0, 1, 2, ...).

A Q-sequence {a.} is called a regular moment sequence if b is regular mass
function, i.e., is of bounded variation, (0 -t-) 0 and (1) 1. Thus, the
Q-sequences constitute a class of moment sequences which contains the class
of regular moment sequences as a proper subset.

If a denotes the number sequence {a}, the statement that the transformation
H, from the set S of all real number sequences into subset of S is the Hausdorff
trans]ormation determined by the number sequence a means that, if s u S and
t Hs, then

.o
t,, A’-a.s, (n O, 1, 2, ...),

where Aa a and Aa A-a, A-a/(Ic 1, 2, 3, --.). Ifais a
Q-sequence with mass function , then H. H*, the Hausdorff transformation
determined by , and if H%,

[ x(1 z)’-’s de(x) (nt 0, 1, 2,..
do p--o

If a is a regular moment sequence, then H. H* is called a regular Hausdorff
transformation.

Let {a} and {b.} be two Q-sequences. H. includes H means that if s is a
real number sequence and lim.(Hs), exists and is the number k, then
lim_(H.s). /c. Hausdorff showed that, if no term of {b.} is 0, then H.
includes H if and only if {a,/b.} is a regular moment sequence. Other formu-
lations of this "Hausdorff inclusion problem" have been given by Hille and
Tamarkin [3] and by Garabedian, Hille and Wall [1] in case each of {a.} and
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