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Let F be a real function defined on the segment (-1, 1), and consider the
following four properties which F may satisfy:

(A) If -1 < a < 1 (n 0, -4-1, +2, ...) and if {an} is a positive definite
sequence, then the sequence {F(an)} is also positive definite.

(B) If 1 < a < 1 (n 0, 4-1, 4-2, ...) and if a} is a sequence of Fourier-
Stieltjes coefficients, then IF(an)} is also a sequence of Fourier-Stie|tjes

coefficients.
(C) If -1 < a < 1 and if (a) is a positive definite in n X n matrix, then

the matrix (F(a)) is also positive definite.
(D) F(x) oCnX(-1 < x < 1),withc >_ 0(n 0, 1,2, ...).
Let us recall that {am} is said to be a positive definite sequence if

(1) a,_x,i >_ 0

for every n and for every complex vector (xl, x). Thus (A) is equivalent to
(A’) If (a_;) (i, j 1, n) is a positive definite n )< n matrix for every

n, then so is the matrix (F(a,_)).
Evidently (A) is thus a weaker requirement than (C). In 1942, Schoenberg

[3; 97] proved that every continuous F which satisfies (C) is of the form (D).
In the present paper it is shown that it is possible to weaken (C) to (A), and
to drop the assumption of continuity:

THEOREM I. If F satisfies (A), then F is of the form (D).

(The converse is trivial, by (2) below.) Since {a + b cos n } is a positive
definite sequence whenever a and b are positive, Theorem I is a corollary of
Theorem IV below, whose hypotheses are even weaker.
The connection between conditions (A) and (B) is that the positive definite

sequences are precisely those which have a representation

(2) am e-’" d(O) (n 0, =i=l, 4-2, ...),

where t is a positive measure. Thus (A) is a condition similar to (B), except
that in (A) F is required to operate on the positive cone of the measure algebra
on the circle, and not on the whole algebra. It has recently been proved [1]
that F can be extended to an entire function in the complex plane, if (B) holds.
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