INVARIANT SUBSPACES OF A NORMAL OPERATOR

By James E. Scroces

Introduction. In the work that follows, we consider a bounded normal
operator on a complex Hilbert space. In general, the terminology and notation
agrees with that found in [3]. Our principal interest is the discovery of con-
ditions on the spectrum of a normal operator which imply that the operator has
invariant non-reducing subspaces. A subspace K of a Hilbert space H is in-
variant with respect to the operator A if for x ¢ K, Ax ¢ K. A subspace which is
invariant with respect to A and its adjoint A* is reducing. We were led to this
study by the work of Halmos [5, 6], Wermer [14, 15], and Bram [1].

In 1950 Halmos published a paper which initiated the study of what he
called subnormal operators. An operator B is subnormal on the Hilbert space
K provided there is a normal operator A on a Hilbert space H with K C H
and A restricted to K (written 4 | K) is B. Notice that the operator B is assumed
given in this definition. We consider as given the operator 4. One of our
purposes is to find criteria for deciding when A is the extension of a subnormal
operator. Particularly, we ask the question, “When is 4 the extension of a
subnormal operator B such that B is not normal?” Since 4 | K = B, K is an
invariant subspace of H. If K is also reducing, then A* | K = B. This would
imply that B is normal. Thus our question reduces to “When does 4 have an
invariant non-reducing subspace?”’ A partial answer to this question is provided
by Theorems 2 and 3.

Wermer has studied the problem from a different standpoint [14]. He has
considered a normal operator A and what he calls property (P). A normal
operator A has property (P) if every invariant subspace of A reduces A. The
proofs of his Theorems 2 and 3 suggested the use of Borel series for the investiga-
tion of our question, at least in the case where the spectrum of A is purely point
spectrum. The series and expansions of functions using the method of Runge
[13; 10] turned out to be fruitful in the study of the spectrum of a normal operator.
These methods led to one of our principal theorems, Theorem 5.

Suppose we know that A on H is a normal operator which does not have
property (P). Let K be an invariant non-reducing subspace for 4. If the
spectrum of A has a hole D in it, Bram has shown that either no point of D
belongs to the spectrum of 4 | K or D is contained in the spectrum of 4 | K
[1; 80]. Some of the results on Borel series (published by Denjoy [2]) indicated
that we might be able to use Borel Series to determine some condition on the
spectrum of A in order to insure the existence of a subspace K of H such that
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