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1. Introduction. A non-empty subset S of a partially ordered vector space
is called o-convex if it is convex, and if x S whenever there exist elements s
and s’ in S such that s <: x

_
s’. A locally o-convex space is a partially ordered

vector space together with a locally convex topology for which there exists a
fundamental system of neighborhoods of the origin consisting of o-convex and
symmetric sets. The most comprehensive study of such spaces has been made
by Namioka [13]. The main objective of this paper is to characterize those
locally o-convex spaces E which have the property that every homomorphism
of E with range in any locally o-convex space is continuous. This is done in 7.

Definitions and preliminary results are collected in 2. If E is any partially
ordered locally convex space, then the collection of all those neighborhoods of
the origin which are o-convex and symmetric forms a base at the origin for a
coarser locally o-convex topology on E. Some relationships between the latter
topology and the original topology on E are obtained in 3. In 4, it is shown
that every element of the dual of a locally o-convex space can be expressed as
the difference of two continuous positive linear functionals, thereby generalizing,
in one direction, a result of M. Krein. This result has also been obtained,
independently, by Bonsall and Namioka. In preparation for our study of two
analogues of bornological spaces (6 and 7), o-inductive limits are defined and
discussed in 6.
A vector lattice, equipped with a compatible topology (i.e., a locally convex

topology for which there exists a fundamental system {V} of neighborhoods of
the origin such that x V and y

_
z imply y V), is a member of the

class of locally o-convex spaces. In 8, we obtain necessary and sufficient
conditions that a compatible topology coincide with the finest compatible
topology, thereby solving a problem which was suggested by Professor Casper
Goffman during a conversation with the author.

2. Preliminaries. Regarding the theory of locally convex spaces, we use
the terminology and results of [5] and [6]. The scalar field of all vector spaces
considered is the field of real numbers. A non-empty subset Q of a vector
spce is called cone provided that (i) Q -J- Q C Q, and (ii) Q C Q for all non-
negative scalars t. A partially ordered vector space (POVS), denoted by (E, P),
is vector space E together with a cone P such that (iii) P % (-P) {0},
where 0 denotes the origin of E; we write x y (or y >_ x) if y x P, nd
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