THE HARMONIC SUMMATION OF THE DERIVED FOURIER SERIES

BY P. C. RATH

1. Let $f(\theta)$ be integrable L in $(-\pi, \pi)$ and periodic with period 2π and let

(1.1)
$$
f(\theta) \sim \frac{1}{2}a_0 + \sum_{1}^{\infty} (a_n \cos n\theta + b_n \sin n\theta) = \frac{1}{2}a_0 + \sum_{1}^{\infty} A_n(\theta).
$$

Then the differentiated series of (1.1) at $\theta = x$ is

(1.2)
$$
\sum_{1}^{\infty} n(b_n \cos nx - a_n \sin nx) = \sum_{1}^{\infty} nB_n(x).
$$

Write

(1.3)
$$
\psi(t) = f(x+t) - f(x-t), \qquad g(t) = \psi(t)/4 \sin \frac{1}{2}t - C,
$$

where C is a function of x .

Let S_n and t_n be respectively the *n*-th partial sum and first harmonic mean of the series (1.2) so that

(1.4)
$$
S_n = \sum_{r=1}^n r B_r(x),
$$

(1.5)
$$
t_n = \sum_{r=1}^n S_{n-r}/r \log n.
$$

DEFINITION. The series (1.2) is said to be summable $(N, 1/n)$ to C, provided that $t_n \to C$ as n
Our object in

at $t_n \to C$ as $n \to \infty$.
Our object in this note is to prove the following

THEOREM. If $g(t)$ is of bounded variation in $(0, \pi)$, and $g(t) \rightarrow 0$ as $t \rightarrow 0$, on the series (1.2) is summable $(N, 1/n)$ to the value C. then the series (1.2) is summable $(N, 1/n)$ to the value C.

In the above theorem it is enough to consider the special case in which $C = 0$. To justify this assertion, consider first the case in which

$$
f(\theta) = C \sin (\theta - x).
$$

Then $B_1(x) = C$, $B_n(x) = 0$ ($n \ge 2$), so that the series (1.2) converges to C and therefore is summable $(N, 1/n)$ a fortiori.

In the general case write

$$
f(\theta) = C \sin (\theta - x) + f_1(\theta).
$$

Let $g_1(\theta)$ be formed from $f_1(\theta)$ in the same way as $g(\theta)$ from $f(\theta)$ but with the C corresponding to $f_1(\theta)$ taken as 0. Then

$$
g_1(t) = g(t) + C(1 - \cos t/2).
$$

Received March 30, 1956. Galley proof returned January 27, 1958.