THE HARMONIC SUMMATION OF THE DERIVED FOURIER SERIES

By P. C. RATH

1. Let $f(\theta)$ be integrable L in $(-\pi, \pi)$ and periodic with period 2π and let

(1.1)
$$f(\theta) \sim \frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos n\theta + b_n \sin n\theta) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} A_n(\theta).$$

Then the differentiated series of (1.1) at $\theta = x$ is

(1.2)
$$\sum_{1}^{\infty} n(b_n \cos nx - a_n \sin nx) = \sum_{1}^{\infty} nB_n(x).$$

Write

(1.3)
$$\psi(t) = f(x+t) - f(x-t), \quad g(t) = \psi(t)/4 \sin \frac{1}{2}t - C,$$

where C is a function of x.

Let S_n and t_n be respectively the *n*-th partial sum and first harmonic mean of the series (1.2) so that

(1.4)
$$S_n = \sum_{r=1}^n r B_r(x),$$

(1.5)
$$t_n = \sum_{r=1}^n S_{n-r}/r \log n$$

DEFINITION. The series (1.2) is said to be summable (N, 1/n) to C, provided that $t_n \to C$ as $n \to \infty$.

Our object in this note is to prove the following

THEOREM. If g(t) is of bounded variation in $(0, \pi)$, and $g(t) \to 0$ as $t \to 0$, then the series (1.2) is summable (N, 1/n) to the value C.

In the above theorem it is enough to consider the special case in which C = 0. To justify this assertion, consider first the case in which

$$f(\theta) = C\sin{(\theta - x)}.$$

Then $B_1(x) = C$, $B_n(x) = 0$ $(n \ge 2)$, so that the series (1.2) converges to C and therefore is summable (N, 1/n) a fortiori.

In the general case write

$$f(\theta) = C \sin (\theta - x) + f_1(\theta).$$

Let $g_1(\theta)$ be formed from $f_1(\theta)$ in the same way as $g(\theta)$ from $f(\theta)$ but with the C corresponding to $f_1(\theta)$ taken as 0. Then

$$g_1(t) = g(t) + C(1 - \cos t/2)$$

Received March 30, 1956. Galley proof returned January 27, 1958.