ALGEBRAIC EXTENSIONS OF ARBITRARY FIELDS

BY G. WHAPLES

The preceding paper [5] suggests two questions. First, is the condition that a field has no extension of degree divisible by p equivalent to the condition that it has no extension of degree p? Second, if a field has a cyclic extension of degree p does it have a cyclic extension of degree p^r for every v ? These questions are answered by Theorems ¹ and 2 below. It turns out that they can be answered by Galois theory only, without any assumption about the nature of the ground field.

THEOREM 1. Let n be any positive integer. There exists a field K which has algebraic extensions of degree divisible by n but has no extension of degree $\leq n$.

Proof. Let *n* be given. Choose *m* such that $m \geq 5$, *n* divides $m!/2$, and $n!$ < $m!/2$. Let k be any field which has a normal separable extension E/k with the alternating group on m letters, \mathfrak{A} , as its Galois group. I shall show that k has an algebraic extension K with the desired property.

Let k and E be given. E , and all fields mentioned in the rest of this proof shall be understood to be subfields of some fixed algebraic closure of k . Consider the set of all extensions L of k such that

$$
(1) \t\t\t\t E \cap L = k.
$$

This is equivalent to the condition that EL/L has the same Galois group $\mathfrak A$ as E/k . This set is partially ordered under inclusion. It is not empty because it at least contains k itself. From (1) it is evident that the union of any linearly ordered subset is again in the set. So it contains a maximal element K , and the Galois group of EK/K is \mathfrak{A} . Let N be any normal extension of K. Then since K was maximal, the Galois group of EN/N is some proper subgroup of \mathfrak{A} ; since $EK \cap N$ is normal over K, it is an invariant subgroup; since $\mathfrak A$ is simple, it is ER $t \in N$ is normal over K , it is an invariant subgroup; since \mathfrak{A} is simple, it is the subgroup $\{1\}$. Thus every normal extension of K contains EK, so its degree over K is at least $m!/2 > n!$. Since any extensio over K is at least $m!/2 > n!$. Since any extension of degree $\leq n$ is contained in a normal extension of degree $\leq n!$, K has no such extension.

Remark. K is very far from being algebraically closed. For example, if p is any odd prime dividing m , then E has a subfield over which E is cyclic of degree p. By Theorem 2, this subfield has a cyclic extension of degree p^r for every ν . Since $\mathfrak A$ has an element of period 4, this is also true for $p = 2$. So K has extensions of degree $2^3 3^{\mu} 5^{\nu} m!$ for every $\lambda \geq -1, \mu \geq 0, \nu \geq 0.$

The second question may be sharpened by asking: When does a field k have a cyclic extension of degree p^{∞} ? An (infinite) algebraic extension C_{∞}/k is called cyclic of degree p^{∞} if C_{∞} is the union of a chain of subfields C, with C_{ν}/k cyclic

Received June 28, 1956.