A FIXED POINT THEOREM FOR MULTI-VALUED FUNCTIONS

By BARRETT O'NEILL

Let K be an n-cell in Euclidean n-space $(n \ge 2)$, and let $T: K \to K$ be a multi-valued function such that for each $x \in K$, T(x) is the boundary (n - 1)-sphere of an n-cell in K. Then [2] asserts that T has a fixed point if either (1) T is continuous, or (2) T is upper semi-continuous and there is an $\epsilon > 0$ such that for each $x \in K$, the interior of T(x) contains an ϵ -neighborhood in \mathbb{R}^n . The following example shows that the first of these assertions is incorrect. The second assertion, though deduced in [2] from the first, is correct, being a corollary of the theorem proved below.

EXAMPLE. Let K be the subspace $\{t \mid || t || \le 1\}$ of \mathbb{R}^n . If $x \in K$, let T(x) be $\{t \mid || t - x || = \rho \& || t || \le 1\} \cup \{t \mid || t - x || \ge \rho \& || t || = 1\}$, where $\rho = 1 - || x || + || x ||^2$.

Using reduced Čech homology theory with a field of coefficients, we consider a strengthened form of upper semi-continuity for an arbitrary multi-valued function $F: X \to Y$. (3^k) If $x \in X$ and U is a neighborhood of F(x), there is a neighborhood V of x such that if $x' \in V$ then $F(x') \subset U$ and each k-cycle on F(x) is homologous in U to a cycle on F(x').

LEMMA. For T as above, (2) implies (3^{n-1}) .

Proof. If $x \in K$ and U is a neighborhood of T(x) in K, then since T(x) is an (n-1)-sphere, there exist neighborhoods $W \subset V \subset U$ such that V does not contain an ϵ -neighborhood in \mathbb{R}^n [ϵ as in (2)] and every cycle on W is homologous in V to a cycle on T(x). Let N be a neighborhood of x such that if $x' \in N$, then $T(x') \subset W$. If z' is a non-zero (n-1)-cycle on T(x'), let z be a cycle on T(x) homologous in V to z'. But z' links [3] an ϵ -neighborhood in \mathbb{R}^n , hence links a point of K - V, and thus does not bound in V. Consequently, z does not bound in the (n-1)-sphere T(x), so (3^{n-1}) holds.

The converse of this remark may be established in a similar way, and without any restriction on the values T(x) of the function T. However, the following theorem does not hold if (3^{n-1}) is replaced by (2).

THEOREM. Let X be a compact, homologically trivial ANR in Euclidean space \mathbb{R}^n . A multi-valued function $F: X \to X$ has a fixed point provided that (3^{n-1}) holds and that, if $x \in X$ and $0 \leq q \leq n-2$, then $H_q(F(x)) = 0$.

Proof. If $x \in X$, let $G(x) = \mathbb{R}^n - D(x)$, where D(x) is the unbounded component of $\mathbb{R}^n - F(x)$. Since $\mathbb{R}^n - X$ is connected, $G(x) \subset X$. By the Alexander duality theorem [3], the infinite homology group $h_q^a(\mathbb{R}^n - F(x))$ vanishes if q > 0. Hence $h_q^a(D(x))$ vanishes if $q \ge 0$, so G(x) is homologically trivial. If $y \in X - G(x)$, since F is upper semi-continuous, there is a neighborhood V of x in X such