REPRESENTATIONS BY HERMITIAN FORMS IN A FINITE FIELD

BY L. CARLITZ AND JOHN H. HODGES

1. Introduction. Let $q = p^n$, p > 2 and suppose that

(1.1)
$$\theta \in GF(q^2), \quad \theta^2 = \nu \in GF(q) \quad \text{but} \quad \theta \notin GF(q).$$

Then, $\alpha = a + b\theta \ \epsilon \ GF(q^2)$ if $a, b \ \epsilon \ GF(q)$. By the conjugate of α we mean $\bar{\alpha} = a - b\theta$. If $A = (\alpha_{ij})$ is a square matrix, $\alpha_{ij} \ \epsilon \ GF(q^2)$, let $A^* = \overline{A'} = (\bar{\alpha}_{ij})'$ where the prime denotes transpose. Then A is said to be Hermitian if and only if $A^* = A$.

In this paper we consider the problem of determining the number $N_t(A, B)$ of $m \times t$ matrices U such that

$$(1.2) U^*AU = B,$$

where A and B are Hermitian, A is non-singular of order m, B is of order t and rank $r \leq m$, and all matrices have elements in $GF(q^2)$. It is first proved (Theorem 1) that

(1.3)
$$N_{\iota}(A, B) = \prod_{i=1}^{r} (q^{2m-2i+1} + (-q)^{m-1}) N_{\iota-r}(A_{r}, 0),$$

where A_r is Hermitian and non-singular of order m - r. The value of $N_t(A, 0)$ is given by Theorem 4. Then using this theorem and (1.3) we obtain the value of $N_t(A, B)$. Incidentally we find (Theorem 3) that the number of Hermitian matrices of order m and rank r is

(1.4)
$$N(m,r) = q^{\frac{1}{2}r(r-1)} \prod_{i=1}^{r} \frac{q^{2m-2(r-i)} - 1}{q^{i} - (-1)^{i}}$$

In §7 we consider a certain sum H(B, s), which for B = 0 reduces to N(t, s). Using a relation between $N_t(A, B)$ and H(B, s) we are able to explicitly evaluate the latter. In §8 we give an application of the sum H(B; s) to the solution of a problem in partitions of Hermitian matrices.

The methods employed here are similar to those used in [2] and [3] in the treatment of the analogous problems for symmetric and skew-symmetric matrices, respectively. It is worth noting that all of the formulas obtained in the present paper hold as well if A and B are skew-Hermitian ($A^* = -A$, $B^* = -B$), for then the matrices θA , θB are Hermitian and may be used in place of A and B above.

2. Notation and preliminaries. Let $q = p^n$, p > 2. Numbers of $GF(q^2)$ will be denoted by lower case Greek letters α , β , \cdots , ξ , except as indicated.

Received August 13, 1954.