FINITE METABELIAN GROUPS AND PLANES OF \sum_{14}

BY LELAND L. SCOTT

1. **Introduction.** We are interested in finite metabelian groups G whose elements, except the identity, are all of order p . The metabelian groups are those groups whose commutator subgroup K is contained in the central C ; hence, G/C is abelian and of type 1, 1, \cdots . We shall assume that the commutator subgroup K and the central C coincide. If not, C is the direct product of K and an abelian group C' , and G is the direct product of C' and a metabelian group G' which possesses all the interesting properties of G [1], [2]. H. R. Brahana has classified groups G which are subgroups of the holomorph of one of their abelian subgroups; thus, we assume G does not have this property [1].

In general, G has the form $G = \{C, U_1, \cdots, U_k\}$ where C is of order p^o with $k-1 \leq c \leq k(k-1)/2$ and G is of order p^{c+k} . Such groups have been classified for $k \leq 4$ [2], and for $k = 5$ [3]. For $k = 6$, the classification has been completed for $c = 15$, 14, and 13 [5]. This paper deals with those groups for which $k = 6$ and $c = 12$.

The group \Im for which $c = k(k - 1)/2$ has been referred to by Brahana as the Master Group [2]. \circled{S} is completely determined by k since a simple isomorphism of two groups with the same k is exhibited by letting generators correspond and by letting commutators of corresponding pairs of generators corresond. For $k = 6$, \circledS is generated by U_1 , U_2 , U_3 , U_4 , U_5 , U_6 , all of order p, and we For $k = 0$, \otimes is generated by U_1 , U_2 , U_3 , U_4 , U_5 , U_6 , and of order p , and we have the additional defining relations for the commutators $C_{ij} = U_i^{-1}U_j^{-1}U_iU_j$
($i < j$: $i = 1, \dots, 5$: $j = 2, \dots, 6$). $(i < j; i = 1, \cdots, 5; j = 2, \cdots, 6).$

Other groups for $k = 6$ are obtained by imposing additional conditions on the commutators. This results in equating a certain subgroup of the commutator subgroup to identity and the resulting group G may be thought of as the quotientgroup of $\mathfrak G$ with respect to the subgroup of C which was equated to identity. In our case, we will be considering quotient-groups of the master group \mathcal{D} determined by subgroups of order p^3 .

2. Geometric statement of the problem. The problem of groups is reduced to a problem of geometry by the following considerations:

The general element of G is $g = c \prod_{i=1}^{s} U_i^{x_i}$ where c is in C. To a point $(x_1x_2x_3x_4x_5x_6)$ of the projective five-space S_5 , there corresponds the subgroup, $\{C,\prod_{i=1}^{6}U_{i}^{x_{i}}\},$ of G .

Similarly, the general element of C is $c = \prod_{i \leq i} C_{ii}^{a_{ij}}$, $(i = 1, \cdots, 5; j = 2,$ \cdots , 6), and to the cyclic subgroup of order p generated by c, there corresponds the point $(a_{12}a_{13}a_{14}a_{15}a_{16}/a_{23}a_{24}a_{25}a_{26}/a_{34}a_{35}a_{36}/a_{45}a_{46}/a_{56})$ of the projective fourteen-space \sum_{14} .

Received June 17, 1952; in revised form, December 31, 1952.