METHODS OF CONSTRUCTING CERTAIN STOCHASTIC MATRICES

By Hazel Perfect

1. Introduction. The problem of determining necessary and sufficient conditions for the $n+1$ real numbers $1, \lambda_{1}, \cdots, \lambda_{n}$, where $\left|\lambda_{i}\right| \leq 1$ for $i=$ $1,2, \cdots, n$, to be a possible set of characteristic roots of a stochastic matrix of order $n+1$ has not yet been fully solved. Suleĭmanova [3] describes a geometrical technique for discussing such conditions, and claims that, using this technique, it is possible to prove that the real numbers $1, \lambda_{1}, \cdots, \lambda_{n}$, where $\left|\lambda_{i}\right|<1$ for $i=1,2, \cdots, n$, are characteristic roots of a positive, simple stochastic matrix of order $n+1$ provided that the sum of the moduli of the negative numbers of the set is less than unity; other allied results for general (i.e. not necessarily strictly positive) stochastic matrices are stated in [3]. In a recent paper [2] I applied Suleĭmanova's technique to the cases $n=2,3$ and proved that the numbers $1, \lambda_{1}, \cdots, \lambda_{n}$, where $\left|\lambda_{i}\right|<1$ for $i=1,2, \cdots, n$, are characteristic roots of a positive, simple, stochastic matrix of order $n+1$ if and only if $1+\sum_{i=1}^{n} \lambda_{i}$ is positive. (The full discussion of the case $n=3$ was not included on account of its length.) The method which I used in [2] in each case yielded a matrix for actually performing the transformation of the given real diagonal matrix $\operatorname{diag}\left(1, \lambda_{1}, \cdots, \lambda_{n}\right), n=2$, 3 , into a positive stochastic matrix. For example, the matrix P diag $\left(1 \lambda_{1} \lambda_{2}\right) P^{-1}$, where $1>\lambda_{1} \geq \lambda_{2} \geq 0$ and

$$
P=\left(\begin{array}{rrr}
1 & 1 & 1 \\
1 & 1 & -1 \\
1 & -1 & 0
\end{array}\right)
$$

is a positive stochastic matrix. As a footnote to [2] I shall, in Theorem 1 of $\S 2$ below, generalize this particular example. For the most part however in this paper I shall reject the geometrical technique of Suleřmanova's, and, applying a theorem (Theorem 2 in §3) essentially due to A. Brauer [1], I shall obtain two theorems (Theorems 3, 4 in §4) giving certain sufficient conditions for the set of real numbers $1, \lambda_{1}, \cdots, \lambda_{n}$, where $\left|\lambda_{i}\right| \leq 1$ for $i=1,2, \cdots, n$, to be a possible set of characteristic roots of a stochastic matrix of order $n+1$.
2. A generalization of a result proved in [2]. It follows very simply from the theory to be described in §§4, 5 that the set of $n+1$ real numbers $1, \lambda_{1}, \cdots, \lambda_{n}$,

Received August 29, 1952.

