THE ASYMPTOTIC BEHAVIOUR OF POWERS OF MATRICES. II.

By Werner Gautschi

This note is an addendum to our paper [3]. We will extend the results obtained in II of [3] by introducing more general norms, and from this we derive further sequences converging towards ω_A . The enumeration of the equations, theorems and sections will be continued from [3].

III. Generalizations

- 1. To any column-vector $x = (x_1, \dots, x_n)$ of the *n*-dimensional complex Euclidean space let a number $\phi(x)$, called the *norm* of x, be assigned, satisfying the following three conditions:
 - (i) $\phi(x) > 0$ except for the null vector x = 0, for which $\phi(0) = 0$,
 - (ii) $\phi(\lambda x) = |\lambda| \phi(x)$ for any complex scalar λ ,
 - (iii) $\phi(x + y) \le \phi(x) + \phi(y)$.

Furthermore, suppose that $\phi(x)$ is bounded over the set of vectors with Euclidean length |x| = 1,

(iv)
$$\phi(x) \le C \qquad (|x| = 1).$$

Let a function of the vector x, $\psi(x)$, satisfy (i) and (ii) and be bounded from below by a *positive* constant for all vectors x with |x| = 1,

$$\psi(x) \ge c > 0 \qquad (|x| = 1).$$

Then for an $n \times n$ matrix $A = (a_{\nu\mu})$ the ratio $\phi(Ax)/\psi(x)$ remains bounded over the set of all vectors $x \neq 0$; we may therefore define its least upper bound

(28)
$$\Omega_{\phi,\psi}(A) \equiv \sup_{x \neq 0} \frac{\phi(Ax)}{\psi(x)}$$

as the (upper) norm of A induced by ϕ and ψ . (Compare for this definition A. Ostrowski [5].) $\Omega_{\phi,\psi}(A)$ is a special case of the most general norm $\Omega(A)$ defined by the three properties:

- (vi) $\Omega(A) > 0$ except when A = 0, in which case $\Omega(0) = 0$,
- (vii) $\Omega(\lambda A) = |\lambda| \Omega(A)$ for any complex scalar λ ,
- (viii) $\Omega(A + B) \leq \Omega(A) + \Omega(B)$, A, B being $n \times n$ matrices.

If in particular we take $\psi(x) = \phi(x)$ assuming of course that ϕ satisfies (v), $\Omega_{\phi} \equiv \Omega_{\phi,\phi}$ also satisfies

$$\Omega_{\phi}(AB) \leq \Omega_{\phi}(A)\Omega_{\phi}(B) \qquad (\Omega_{\phi} \equiv \Omega_{\phi,\phi}),$$

Received November 5, 1952. This note is part of the author's doctoral dissertation presented to the University of Basle, Switzerland.