HOMOGENEOUS SPACES
By J. R. IsBELL

1. Introduction. This paper summarizes and refines results of Kuratowski
[2] and van Dantzig [3] on homogeneous spaces in general. It provides a counter-
example to a query of van Dantzig [3] and a few lemmas which may help toward
solution of the problem he raised: does there exist a noninvolutory homogeneous
group? Now every group is bihomogeneous, and every Abelian group is in-
volutory homogeneous. The example given is a noninvolutory homogeneous
manifold made up of uncountably many planes. Further, it is shown that every
microhomogeneous connected linearly ordered space is locally Birkhoff homo-
geneous.

We list below six properties of a topological space, together with the defining
relations. These properties have been previously studied in [2] and [3].

(a) Homogeneity: for two points, x, y, there is an automorphism (homeo-
morphism of space onto itself) sending z to y.

(b) Bihomogeneity: there is an automorphism sending z to y and y to x.

(¢) Involutory homogeneity: there is an involution sending x to y (hence y to x).

(d) Microhomogeneity: there are neighborhoods U of z, V of y, and a topo-
logical equivalence ¢ : U — V, o(x) = y.

(e) Almost homogencity: there is a homeomorphism ¢nto sending x to y.

(f) Two-point homogenerty: for any z, y, distinct, and 2, w, distinet, there is an
automorphism sending z to z and y to w.

The concepts (a)-(e) suggest point relations, which are equivalence relations
only in cases (a) and (d). We abbreviate both ‘“homogeneous” and “equiva-
lent”” with the initial h. The letters b, ¢, m, a, will be used similarly. The con-
text will make it clear which meaning is to be taken for the ambiguous abbrevia-
tions. We refer to the h-equivalence classes (transitivity sets) as rooms, and
to the m-equivalence classes as m-rooms.

We shall call a linearly ordered space Birkhoff homogeneous if it is order-
isomorphic to all its open intervals; G. D. Birkhoff’s linear homogeneous con-
tinua are obtained by the further requirement that all bounded monotone
simple sequences converge. We add the following two concepts:

1.1. DerFinITION. Two points are semi-equivalent if they have neighborhood
bases which may be put into one-one correspondence so that corresponding
terms are homeomorphic.

The property does not imply m-equivalence; it is an equivalence relation and
determines in the obvious way s-rooms and s spaces.
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