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1. Introduction. We shall use the word ring to mean commutative ring with
at least two elemen.ts, and unless otherwise stated every ring considered is
assumed to have a unit element 1. If R is a ring, the polynomial ring R[xl, x2,

x] in a finite number n of indeterminates will be denoted by R[x]. The
element f of R[x] is irreducible over R if f is not itself a unit of R[x] and any
factorization f gh in R[x] implies that g or h is a unit of R[x]. The element f
of R[x] may be said to be primitive (over R) if the coefficients of terms of f of
positive degree generate the unit ideal in R.
Now for certain rings R no primitive polynomial can be irreducible over R.

For example, assume that R has nonzero idempotents el, e2 such that el -}- e2 1,
and therefore e,e 0. If c, d, are elements of the ring eR[x] such that
c,d, e,(i 1, 2), then clearly f (c c.f)(dlf d2). Furthermore,
neither of these factors can be a unit. For if, for example, cl - c.f has an
inverse k in R[x], then c2fk e and c2f is a unit of the ring eR[x]. This
implies ([2; 5] or [4; 683]) that every coefficient of a term of positive degree in
cf is nilpotent. However, this is impossible since f is a primitive polynomial
and c is not a divisor of zero in eR[x].
We shall see that for certain polynomials, the only factorizations into nonunit

factors are of the kind just described. For convenience, we now make the
following definition.
The element f of R[x] is weakly irreducible over R if to each factorization

f gh, where g and h are nonunits of R[x], there exist nonzero idempotents
e,, e. of R with e -- e 1, and elements c, d of eR[x] with cd e,(i 1, 2),
such that g c cf and h df d2.

Clearly, a polynomial which is irreducible over R is weakly irreducible over R.
Also, if R is a ring which has no idempotents except 0 and 1, a polynomial
which is weakly irreducible over R is necessarily irreducible over R.
The main result of this note is Theorem 1 which gives conditions under

which a primitive polynomial is weakly irreducible.
An interesting special case arises if f is a polynomial with integral coefficients,

in which case f may be considered as an element of R[x], where R is any ring.
Theorem 2 states that if f is such a polynomial which is irreducible over every
field, then f is weakly irreducible over every ring. Classical examples of poly-
nomials irreducible over every field are the determinants of any order with
indeterminate elements, and the resultant of two polynomials in one indeter-
minate with indeterminate coefficients.
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