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1. Introduction. In this note we study the location of the critical points
of polynomials of the form p(x) (x -t- 1) (x al) (x at) where the
a are real. A root of the derivative p’(x) will be called a trivial critical point if
it arises from a multiple root of p(x); the other roots of p’(x) will be called non-
trivial critical points. All but two of the roots of p’(x) can be accounted for
by the multiplicities of roots of p(x) and by Rolle’s theorem. For k <: 4, the
theorem on page 32 of [1] shows that if the roots a lie in the closed interval
[0,(n(n 2k))/k] and are not all concentrated at (n(n 2k))/k then the two
critical points not accounted for are nonreal (here n 2k + l, the degree of
p(x)). Our theorem (4 below) gives the general situation in which there are
nontrivial nonreal critical points.

In 2 and 3 we prove some preliminary results which are used in the proof
of the main theorem. For notations and concepts not explicitly defined we refer
the reader to [1].

2. Preliminary lemmas. Let (,) be the class of polynomials with roots
of multiplicity k at i and -i and with real roots at such that _< at <_ a <_

_< a, _<.

LEMMA 1. Suppose f 5:(, ,) is such that between two distinct successive
roots am, am/ Of $ there are three real critical points r r and ra Then there
exists an f ff(, ") of the form f (x - 1) (x a) (x )-m with thre
real critical points 1, 2 a and <_ a < 1 <_ . <_ a < <_ %

The nontrivial critical points of fl(x) are given by the roots of the logarithmic
derivative F(x) of f,(x). We write F,(x) in the form

By assumption, Fl(rl) Fl(r2) Fl(ra) 0 where am < r _< r2 _< r3 < am/l.

Since F is positive immediately to the right of am and negative immediately to
the left of a/l and rl, r2, and r are the only roots of F1 in [am, a=/], it is clear
that dFl(r,)/dx

_
O, dF,(r)/dx

_
O, dF(r3)/dx <_ O.

Let a and be the unique .roots of the equations
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