CONGRUENCES FOR THE MÉNAGE POLYNOMIALS

By L. CARLITZ

1. Introduction. In a recent paper [2], Riordan showed that the generalized menage numbers $u_{n,r}$ satisfy the recurrence

(1.1)
$$n! = \sum_{k=0}^{n} {2n \choose k} (1-t)^k U_{n-k}(t),$$

where

$$(1.2) U_n = U_n(t) = \sum_{r=0}^n u_{n,r} t^r.$$

Making use of (1.1), he proved that U_n satisfies the congruence

$$(1.3) U_{p^2+n} \equiv (t^{p^2} - 1)U_n \pmod{p},$$

where p is a prime > 2.

In the present note we prove the stronger result

$$(1.4) U_{m^2+n} \equiv (t-1)^{m^2} U_n \pmod{m},$$

where m is an arbitrary integer ≥ 2 . In place of (1.1) we make use of the formulas [1; 121]

$$(1.5) U_n = nW_{n-1} + 2(t-1)^n = W_n - (t-1)^2 W_{n-2} (n > 0),$$

and

$$(1.6) W_n = nW_{n-1} + (t-1)^2 W_{n-2} + 2(t-1)^n (n > 0),$$

which is a consequence of (1.5). Here $W_n = W_n(t)$ is a polynomial which may be defined by

$$W_n(t) = \sum_{k=0}^{n} {2n - k + 1 \choose k} (n - k)!(t - 1)^k.$$

(Following a suggestion of Riordan, we write $V_n(t)$, $W_n(t)$ in place of the $H_n(t)$, $I_n(t)$ of [1]. This is in agreement with the notation of [2].)

2. We first establish the congruence

$$(2.1) W_{m+k-1} - (t-1)^{2k} W_{m-k-1} \equiv 2(t-1)^m W_{k-1},$$

for $1 \le k \le m-1$; all congruences are modulo m (except as noted). If we take m=n in (1.6) we get

$$(2.2) W_m \equiv (t-1)^2 W_{m-2} + 2(t-1)^m (or U_m \equiv 2(t-1)^m);$$

Received April 12, 1952.