THE MINIMA OF SOME NON-HOMOGENEOUS FUNCTIONS OF TWO VARIABLES

By L. J. Mordell

It is known that if $f(x, y)$ is a function of two variables x, y, there are results given by the

Theorem. Let x_{0}, y_{0} be any real numbers. Then for certain functions $f(x, y)$, there exist numbers x, y such that

$$
\begin{equation*}
x \equiv x_{0} \quad(\bmod 1), \quad y \equiv y_{0} \quad(\bmod 1) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
|f(x, y)| \leq k \max \left(|f(1,0)|, \quad|f(0,1)|, \quad|f(1,1)|, \quad\left|f(1,-1)_{i}\right|\right) \tag{2}
\end{equation*}
$$

where k is a number to be defined and depending only upon $f(x, y)$.
Take $f(x, y)$ to be a binary form of degree n and $k=2^{-n}$. When $n=2$ and $f(x, y)$ is an indefinite form, Barnes [2] has proved the theorem in the sharper form with $|f(1,1)|,|f(1,-1)|$ replaced by $\min |f(1, \pm 1)|$. When $n=3$, the theorem has been proved by Bambah [1] when the discriminant of $f(x, y)$ is positive, and by Chalk [3] when the discriminant is negative. In studying Chalk's proof, it seemed to me that his result was of such a character that it should be capable of proof without any detailed calculation, and that it must be a particular case of a more general theorem. By using some of Chalk's ideas and with little formal calculation, I prove this.

Write $X=p x+q y, Y=r x+s y$, where p, q, r, s are real numbers and $p s-q r \neq 0$. Special cases of my result are given by (2) with

$$
f(x, y)=X^{n}+Y^{n}, \quad k=2^{-n} \quad(n>1)
$$

where n is the quotient of two positive odd integers. Chalk's result is the case $n=3$. Another instance is

$$
f(x, y)=X^{3}+Y^{3}+l(X+Y), \quad k=\frac{1}{2} \quad(l \geq 0)
$$

This means that $f(x, y)$ can be written as

$$
f(x, y)=(e x+f y)\left(a x^{2}+b x y+c y^{2}+1\right)
$$

where a, b, c, e, f are all real, and the binary quadratic term is positive definite.
Finally we take

$$
f(x, y)=Y e^{x^{n}}, \quad k=\frac{1}{2} \quad(1<n \leq 2)
$$

where n is the quotient of an even integer by an odd one.

