UNIQUENESS FOR p-REGULAR MAPPING

By J. J. GERGEN AND F. G. DRESSEL

1. Principal result. Let a be a positive number. Let Γ denote the circle of radius a about the origin as center in the (x,y)-plane. Let S be the interior of Γ . Let p(x,y) satisfy the following conditions on S and $\overline{S} = S + \Gamma$.

(1.1)
$$p \in C^0(\overline{S}); \quad p \text{ is real and } > 0 \text{ on } \overline{S}.$$

(1.2)
$$p \in C'(S); \quad p_x, p_y \text{ are bounded on } S.$$

If F(z) = u(x,y) + iv(x,y), where z = x + iy and u and v are real, is of class C' on S, and if on S,

$$pu_x = v_y$$
, $pu_y = -v_x$,

then F is p-regular on S and its p-derivative is

$$F'(z) = p^{\frac{1}{2}}u_x + iv_x p^{-\frac{1}{2}}.$$

In [3] the authors proved the following theorem.

THEOREM 1. Let S' be a finite domain whose boundary Γ' is a simple closed rectifiable curve. Let $z^{(1)}$, $z^{(2)}$, $z^{(3)}$ be distinct points on Γ , and let $Z^{(1)}$, $Z^{(2)}$, $Z^{(3)}$ be distinct points on Γ' in the same order on Γ' as the points $z^{(1)}$, $z^{(2)}$, $z^{(3)}$ on Γ . Then there exists a function F(z), continuous on \overline{S} , p-regular and with non-vanishing p-derivative on S, such that the transformation Z = F(z) maps \overline{S} onto $S' + \Gamma'$ in a 1:1 manner with S, Γ , $z^{(k)}$ corresponding to S', Γ' , $Z^{(k)}$.

The object in the present paper is to complete Theorem 1 by showing that the mapping function obtained in Theorem 1 is unique. We obtain the following somewhat more general result.

Theorem 2. Let $F_1(z)$, $F_2(z)$ satisfy the following conditions.

(1.3)
$$F_1$$
, $F_2 \in C^0(\overline{S})$; F_1 , F_2 are p-regular on S .

(1.4) The transformations $Z=F_1(z),\ Z=F_2(z)$ map \overline{S} onto the same set, the mapping in each case being 1:1.

Then $F_1 \equiv F_2$ on \overline{S} if any one of the following four conditions holds.

(1.5)
$$F_1 = F_2$$
 at three (or more) distinct points of Γ .

(1.6)
$$F_1 = F_2$$
 at one point of Γ and at one point of S .

(1.7)
$$F_1 = F_2$$
 at two distinct points of S .

$$(1.8) F_1 = F_2 and F_1' = F_2' at one point of S.$$

Received November 21, 1951; presented to the American Mathematical Society, November 24, 1951.