NOTE ON THE EXTENSION OF RECTANGLE FUNCTIONS

By H. Kober

1. Introduction. Let \Re be the rectangle $0 \le x \le a, 0 \le y \le b$ (a, b fixed), and let $\Re_{\lambda}(0 \le \lambda < 1)$ be the set of rectangles $R \subset \Re$ for which the ratio of the shorter to the longer side is $\ge \lambda$ (λ fixed). All the rectangles occurring, denoted by R, r or ρ , are oriented, that is, have sides parallel to the axes; R is a closed, R^0 an open rectangle. Similarly I or i is a closed, I^0 or i^0 an open oriented linear interval.

Let $f^{\lambda}(R)$ be an interval function defined in Eu_2 , the Euclidean space of two dimensions, for every rectangle $R \subset \mathfrak{R}_{\lambda}$, and write \mathfrak{R} for \mathfrak{R}_{λ} and f(R) for $f^{\lambda}(R)$ when $\lambda = 0$. If there exists a completely additive function $\phi(B)$ which is defined for every Borel set $B \subset \mathfrak{R}$ and such that $\phi(R) = f^{\lambda}(R)$ for any $R \subset \mathfrak{R}_{\lambda}$, then $f^{\lambda}(R)$ is said to admit an extension; it is said to admit a β -extension if $\phi(B) = f^{\lambda}(R)$ whenever $R \subset \mathfrak{R}_{\lambda}$ and $R^{0} \subset B \subset R$ [4; §1.6]. The extension of $f^{\lambda}(R)$ to $\phi(B)$ plays a considerable part in analysis [6; Chapter III]. Results that are of particular value for applications have been given by Reichelderfer and Ringenberg [3], Ringenberg [4], Rechard and Reichelderfer [2], and by Radó [1]. For example, the following results are cited.

A non-negative function f(R) $(R \subset \Re)$ admits an extension if and only if it satisfies (a) the condition D below [3] (for the case $0 \leq \lambda < 1$, see [4]) or (b) the conditions E below [2].

D. THE RADÓ-REICHELDERFER-RINGENBERG CONDITION. $f(r_1) + \cdots + f(r_m) \leq \sum f(R_i)$ whenever m is finite, $r_i r_k = 0$ for $j \neq k$ and $\sum r_i \subset \sum R_i \subset \Re$, where the R_i 's are finite or infinite in number and may overlap.

E. THE RECHARD-REICHELDERFER CONDITIONS.

(i) $f(R_1) + f(R_2) \le f(R)$ when $R_1 + R_2 \subset R \subset \Re$ and $R_1R_2 = 0$.

(ii) $f(R) \leq f(R_1) + f(R_2)$ when $R \subset R_1 + R_2 \subset \Re$.

(iii) If $R \subset \Re$, $R_{\epsilon} = \Re R_{\epsilon}^{*}$, where R_{ϵ}^{*} is the rectangle containing R with sides parallel to those of R at a distance $\epsilon(\epsilon > 0)$, then $f(R_{\epsilon}) \to f(R)$ as $\epsilon \to 0$.

Plainly E(iii) is a condition of continuity. A similar condition plays a part in Ringenberg's results [4]. It is easily shown, and probably known, that D is equivalent to

D'. (i) $f(r_1) + \cdots + f(r_m) \leq f(R)$, where $\sum r_i \subset R \subset \mathfrak{R}$, $r_i r_k = 0$ for $j \neq k$, and (ii) $f(r) \leq \sum f(R_i)$, where $r \subset \sum R_i \subset \mathfrak{R}$.

Evidently D'(i) is satisfied when f(R) is non-negative and additive. Note that the actual results are more general than stated above.

2. In the present paper a continuity condition is introduced which, in the special case of a non-negative and additive function f(R), turns out to be equivalent to E(iii) and by which, therefore, our Theorem 1(b) can be reduced to the Rechard-

Received September 17, 1951; in revised form, January 25, 1952.