NOTE ON THE EXTENSION OF RECTANGLE FUNCTIONS

By H. Kober

1. Introduction. Let \Re be the rectangle $0 \leq x \leq a, 0 \leq y \leq b$ (a, b fixed), and let $\Re_{\lambda}(0 \leq \lambda<1)$ be the set of rectangles $R \subset \Re$ for which the ratio of the shorter to the longer side is $\geq \lambda$ (λ fixed). All the rectangles occurring, denoted by R, r or ρ, are oriented, that is, have sides parallel to the axes; R is a closed, R^{0} an open rectangle. Similarly I or i is a closed, I^{0} or i^{0} an open oriented linear interval.

Let $f^{\lambda}(R)$ be an interval function defined in $E u_{2}$, the Euclidean space of two dimensions, for every rectangle $R \subset \Re_{\lambda}$, and write \Re for \Re_{λ} and $f(R)$ for $f^{\lambda}(R)$ when $\lambda=0$. If there exists a completely additive function $\phi(B)$ which is defined for every Borel set $B \subset \Re$ and such that $\phi(R)=f^{\lambda}(R)$ for any $R \subset \Re_{\lambda}$, then $f^{\lambda}(R)$ is said to admit an extension; it is said to admit a β-extension if $\phi(B)=f^{\lambda}(R)$ whenever $R \subset \Re_{\lambda}$ and $R^{0} \subset B \subset R[4 ; \S 1.6]$. The extension of $f^{\lambda}(R)$ to $\phi(B)$ plays a considerable part in analysis [6; Chapter III]. Results that are of particular value for applications have been given by Reichelderfer and Ringenberg [3], Ringenberg [4], Rechard and Reichelderfer [2], and by Radó [1]. For example, the following results are cited.

A non-negative function $f(R)(R \subset \Re)$ admits an extension if and only if it satisfies (a) the condition D below [3] (for the case $0 \leq \lambda<1$, see [4]) or (b) the conditions E below [2].
D. The Radó-Reichelderfer-Ringenberg condition. $f\left(r_{1}\right)+\cdots+$ $f\left(r_{m}\right) \leq \sum f\left(R_{i}\right)$ whenever m is finite, $r_{j} r_{k}=0$ for $j \neq k$ and $\sum r_{j} \subset \sum R_{i} \subset \mathfrak{R}$, where the R_{j} 's are finite or infinite in number and may overlap.
E. The Rechard-Reichelderfer conditions.
(i) $f\left(R_{1}\right)+f\left(R_{2}\right) \leq f(R)$ when $R_{1}+R_{2} \subset R \subset \Re$ and $R_{1} R_{2}=0$.
(ii) $f(R) \leq f\left(R_{1}\right)+f\left(R_{2}\right)$ when $R \subset R_{1}+R_{2} \subset \Re$.
(iii) If $R \subset \Re, R_{\epsilon}=\Re R_{\epsilon}^{*}$, where R_{ϵ}^{*} is the rectangle containing R with sides parallel to those of R at a distance $\epsilon(\epsilon>0)$, then $f\left(R_{\epsilon}\right) \rightarrow f(R)$ as $\epsilon \rightarrow 0$.

Plainly E (iii) is a condition of continuity. A similar condition plays a part in Ringenberg's results [4]. It is easily shown, and probably known, that D is equivalent to
D^{\prime}. (i) $f\left(r_{1}\right)+\cdots+f\left(r_{m}\right) \leq f(R)$, where $\sum r_{i} \subset R \subset \Re, r_{i} r_{k}=0$ for $j \neq k$, and (ii) $f(r) \leq \sum f\left(R_{i}\right)$, where $r \subset \sum R_{i} \subset \mathfrak{R}$.

Evidently $\mathrm{D}^{\prime}(\mathrm{i})$ is satisfied when $f(R)$ is non-negative and additive. Note that the actual results are more general than stated above.
2. In the present paper a continuity condition is introduced which, in the special case of a non-negative and additive function $f(R)$, turns out to be equivalent to E(iii) and by which, therefore, our Theorem 1(b) can be reduced to the Rechard-

Received September 17, 1951; in revised form, January 25, 1952.

