CREMONA TRANSFORMATIONS ASSOCIATED WITH THE CHORDS OF A TWISTED CUBIC

By M. L. Vest

1. Introduction. A Cremona space transformation is a one-one relation between generic points P and P^{\prime} of two spaces S and S^{\prime}, respectively [1; 155]. Such transformations are birational. The spaces S and S^{\prime} are supposed to exist independently unless the contrary is specified. However, S and S^{\prime} may be superposed. This gives rise to additional properties of the transformation which are of interest, for example, invariant and involutory elements, self-corresponding elements; in particular, it brings into being the associated complex of lines joining homologous points. Under certain circumstances the complex may reduce to a congruence. In the case of involutorial transformations it is known [1; 181] that if the complex reduces to a congruence this congruence is of the first degree and consists of either:
(i) the lines through a point,
(ii) the lines meeting a line l and a curve of degree m which meets l in $m-1$ points, or
(iii) the chords of a cubic curve.

Involutions having associated congruences of types (i) and (ii) have been discussed by the author in two previous papers [2], [3]. The present paper is concerned with Cremona transformations, both involutorial and non-involutorial, having associated congruences which are the chords of a twisted cubic. As in the two papers just mentioned the discussion is almost entirely analytic.
2. Definition of the involution. Consider a twisted cubic r and a pencil of surfaces

$$
\left|F_{2 n+2}\right|: r^{n} g_{n^{2}+8 n+4}
$$

of order $2 n+2$, in which the cubic r is contained n times. Through a generic point $P(y)$ there passes a single F of $|F|$, and also through P there is a unique line t belonging to the congruence of chords of r. The line t meets F a second time in a point $Q(x)$, the image of $P(y)$ under the transformation so defined. The residual base curve of $|F|$ has been denoted by g, is of order $n^{2}+8 n+4$, and is considered to be non-composite. It will be shown that r and g are fundamental curves of the involution which is of order $4 n+9$.
3. Equations of the involution. Let us take the equation of the twisted cubic r as

$$
\begin{equation*}
x_{1}: x_{2}: x_{3}: x_{4}=h^{3}: h^{2}: h: 1 \tag{1}
\end{equation*}
$$

Received January 2, 1952.

