CONGRUENCES FOR THE COEFFICIENTS OF HYPERELLIPTIC AND RELATED FUNCTIONS

By L. CARLITZ

1. Introduction. In a previous paper [2] the writer considered the coefficients of the Jacobi elliptic function

(1.1)
$$f(x) = \operatorname{sn}(x, k^2) = \sum_{m=1}^{\infty} \frac{a_m x_m}{m!},$$

where the rational number $l = k^2$ is integral (mod p), p an odd prime, and proved

(1.2)
$$\sum_{i=0}^{r} (-1)^{r-i} {r \choose i} a_p^{r-i} a_{m+i(p-1)} \equiv 0 \pmod{p^r}$$

for $m \ge r \ge 1$. The question was raised there whether like results hold in the hyperelliptic case, for example for the function $g(x) = \sum_{1}^{\infty} c_m x^m / m!$ satisfying

$$(1.3) g'^2(x) = 1 + A_1 g(x) + \dots + A_6 g^6(x),$$

where A_1 , \cdots , A_6 are integral (mod p). The method of [2] apparently fails for the following reason. In the case of (1.1) we find that $D^{p-1}f$, where D denotes d/dx, is a polynomial in f of degree p, and by means of this and some previous results it is shown that

$$(1.4) (D^{p} - a_{p}D)f = p \sum_{i=0}^{\infty} d_{i}f^{i},$$

where the d_i are integral (mod p); (1.2) follows fairly easily from (1.4). Now for a function satisfying (1.3), we can only assert that $D^{p-1}g$ is a polynomial in g of degree $\leq 2p-1$, and it does not seem possible to prove a result like (1.4).

The method of [2] can however be modified to apply to the hyperelliptic case and more generally to the class of functions $g(x) = \sum_{1}^{\infty} c_m x^m/m!$ such that the inverse function is of the form $\sum_{1}^{\infty} e_m x_m/m$, where the c_m , e_m are integral (mod p) and $c_1 = e_1 = 1$. (This is the class of functions for which a generalization of the Staudt-Clausen theorem has been proved [1]). We are however not able to prove (1.2) in the present case but only the weaker result

(1.5)
$$\sum_{i=0}^{r} (-1)^{r-i} {r \choose i} c_p^{r-i} c_{m+i(p-1)} \equiv 0 \pmod{p^s},$$

where $s = [\frac{1}{2}(r+1)]$. A formula similar to (1.5) also holds for the coefficients of $g^{\lambda}(x)$ (see (3.8) below).

In the next place, let

$$\frac{x}{g(x)} = \sum_{m=0}^{\infty} \frac{\beta_m x^m}{m!};$$

Received November 1, 1951.