REMARKS ON THE CLAYTOR IMBEDDING THEOREM

By Edwin E. Moise

It was shown by Kuratowski [4] that a Peano space (that is, a compact, metric, locally connected continuum) is imbeddable in a 2-sphere if it contains only a finite number of simple closed curves and contains neither of the two "primitive skew graphs" defined as follows: (I) P_1 consists of the points p_1 , p_2 , \cdots , p_5 and the arcs (p_ip_i) , where $1 \le i < j \le 5$, and where different arcs (p_ip_i) intersect only at their end-points. (II) P_2 consists of the points p_1 , p_2 , p_3 and p_1 , p_2 , p_3 , and the arcs p_1 , where different arcs p_1 , intersect only at their end-points. It was shown by Claytor [2] that if p_1 is a Peano space which has no cut-point and which contains no set homeomorphic to p_1 or p_2 , then p_2 is imbeddable in a 2-sphere. The object of the present note is to give a proof of Claytor's theorem, based on a brick partitioning theorem due to p_1 . H. Bing.

A grille decomposition of a Peano space is a finite collection G of mutually exclusive connected, uniformly locally connected open sets, such that $\overline{G^*}$ is S. (G^* denotes the sum of the elements of G.) The mesh of G is the maximum of the diameters of its elements. A complete sequence of grille decompositions of G is a sequence of G_1 , G_2 , \cdots of grille decompositions of G, such that for each G, G, is a refinement of G, and such that for any positive number G, only a finite number of the G, shave mesh greater than G. Given a grille decomposition G of G, the 1-nerve of G is an abstract graph whose vertices correspond to the elements of G, such that two vertices are joined by a (unique) edge if and only if the corresponding elements of G have a boundary point in common. If G is a grille decomposition of G, such that for each G, G of G, the interior of G is uniformly locally connected, then we say that G is a brick partitioning of G [1]. It has been shown by Bing [1; Theorem 8] that every Peano space has a complete sequence of brick partitionings.

Let S be a space satisfying the hypothesis of Claytor's imbedding theorem, and let G_1 , G_2 , \cdots be a complete sequence of brick partitionings of S. Let H_1 be the 1-nerve of G_1 .

LEMMA. H_1 is imbeddable in a 2-sphere.

Proof. For each element g_i of G_i , let p_i be a point of g_i ; and for each g_i , g_i for which $\overline{g_i} \cap \overline{g_i} \neq 0$, let p_{ij} be a point of $\overline{g_i} \cap \overline{g_j}$ which does not belong to the closure of $S - (g_i \cup g_i)$. Since each g_i is locally connected at each point of its boundary, each set $g_i \cup p_{ij}$ is locally connected, whence it follows from a theorem of Moore [7; 86] that there is an arc $p_i p_{ij}$ which lies, except for p_{ij} , wholly in g_i . (While $g_i \cup p_{ij}$ is neither compact not locally compact, it satisfies

Received October 29, 1951.