THE CHARACTERISTIC ROOTS OF A MATRIX

By Sen-ming Leng

In 1900 Bendixson [2] showed that any root $\lambda=x+i y$ of the characteristic equation

$$
\begin{equation*}
\left|\left(a_{i j}\right)-\lambda\left(\delta_{i j}\right)\right|=0 \tag{1}
\end{equation*}
$$

of an $n \times n$ matrix ($a_{i i}$), when the numbers $a_{i j}$ as well as x and y are real, lies in the rectangle

$$
\begin{equation*}
\alpha_{1} \geq x \geq \alpha_{n}, \quad|y| \leq\left[\frac{1}{2} n(n-1)\right]^{\frac{1}{2}} \max \frac{1}{2}\left|a_{i i}-a_{i i}\right| \tag{2}
\end{equation*}
$$

where α_{1} and α_{n} are the greatest and least of the characteristic roots of the Hermitian matrix $\frac{1}{2}\left(a_{i j}+a_{i i}\right)$. Hirsch [8] observed that if in Bendixson's theorem $a_{i j} \pm a_{i i}$ is replaced by $a_{i j} \pm \bar{a}_{i i}$, the first part of (2) holds for arbitrary complex matrix ($a_{i j}$) and the second part of (2) holds when ($a_{i j}+a_{i i}$) is real. He proved also that

$$
\begin{equation*}
|\lambda| \leq n \max \left|a_{i j}\right| \tag{3}
\end{equation*}
$$

Bromwich [3] extended (2) to the symmetric form

$$
\begin{equation*}
\alpha_{1} \geq \frac{1}{2}(\lambda+\bar{\lambda}) \geq \alpha_{n}, \quad \beta_{1} \geq \frac{1}{2 i}(\lambda-\bar{\lambda}) \geq \beta_{n} \tag{4}
\end{equation*}
$$

where α_{1}, α_{n} and β_{1}, β_{n} are the greatest and least of the characteristic roots of $\frac{1}{2}\left(a_{i j}+\bar{a}_{i i}\right)$ and $\frac{1}{2} i\left(a_{i j}-\bar{a}_{i i}\right)$ respectively. I. Schur [10] extended (3) to the symmetric and explicit form

$$
\begin{equation*}
\sum_{i}\left|\lambda_{i}\right|^{2} \leq \sum_{i, i}\left|a_{i j}\right|^{2} \tag{5}
\end{equation*}
$$

the λ_{i} 's being the characteristic roots of $\left(a_{i j}\right)$. But in proving that (4) involves (2), Bromwich had already established (5) for real skew-symmetric ($a_{i j}$), and it is actually along the same line that Schur derived from (5) and (4) the second part of (2) for real ($a_{i j}$).

Schur established (5) by writing ($a_{i j}$) in the form

$$
\begin{equation*}
\left(a_{i j}\right)=\left(u_{i j}\right)\left(t_{i j}\right)\left(\bar{u}_{i i}\right), \quad\left(\left(\bar{u}_{i i}\right)=\left(u_{i j}\right)^{-1}, t_{i i}=\lambda_{i}, t_{i i}=0, j>i\right), \tag{6}
\end{equation*}
$$

and equating the coefficients of λ^{n-1} in the identities

$$
\begin{aligned}
\left|\left(a_{i j}\right)\left(\bar{a}_{i i}\right)-\lambda\left(\delta_{i j}\right)\right| & =\left|\left(\bar{u}_{i i}\right)\right|\left|\left(a_{i j}\right)\left(\bar{a}_{i i}\right)-\lambda\left(\delta_{i i}\right)\right|\left|\left(u_{i i}\right)\right| \\
& =\left|\left(t_{i j}\right)\left(\bar{t}_{i i}\right)-\lambda\left(\delta_{i i}\right)\right|,
\end{aligned}
$$

Received November 18, 1949; in revised form, January 8, 1952. The author wishes to express his gratitude to the referee for valuable criticisms and suggestions.

