THE CHARACTERISTIC ROOTS OF A MATRIX

By SEN-MING LENG

In 1900 Bendixson [2] showed that any root $\lambda = x + iy$ of the characteristic equation

$$(1) |(a_{ij}) - \lambda(\delta_{ij})| = 0$$

of an $n \times n$ matrix (a_{ij}) , when the numbers a_{ij} as well as x and y are real, lies in the rectangle

(2)
$$\alpha_1 \geq x \geq \alpha_n$$
, $|y| \leq \left[\frac{1}{2}n(n-1)\right]^{\frac{1}{2}} \max \frac{1}{2} |a_{ij} - a_{ji}|$,

where α_1 and α_n are the greatest and least of the characteristic roots of the Hermitian matrix $\frac{1}{2}(a_{ij} + a_{ji})$. Hirsch [8] observed that if in Bendixson's theorem $a_{ij} \pm a_{ji}$ is replaced by $a_{ij} \pm \overline{a}_{ji}$, the first part of (2) holds for arbitrary complex matrix (a_{ij}) and the second part of (2) holds when $(a_{ij} + a_{ji})$ is real. He proved also that

$$|\lambda| \leq n \max |a_{ij}|.$$

Bromwich [3] extended (2) to the symmetric form

(4)
$$\alpha_1 \geq \frac{1}{2} (\lambda + \bar{\lambda}) \geq \alpha_n, \quad \beta_1 \geq \frac{1}{2i} (\lambda - \bar{\lambda}) \geq \beta_n,$$

where α_1 , α_n and β_1 , β_n are the greatest and least of the characteristic roots of $\frac{1}{2}(a_{ij} + \overline{a}_{ii})$ and $\frac{1}{2}i(a_{ij} - \overline{a}_{ji})$ respectively. I. Schur [10] extended (3) to the symmetric and explicit form

$$\sum_{i} |\lambda_{i}|^{2} \leq \sum_{i,j} |a_{ij}|^{2},$$

the λ_i 's being the characteristic roots of (a_{ij}) . But in proving that (4) involves (2), Bromwich had already established (5) for real skew-symmetric (a_{ij}) , and it is actually along the same line that Schur derived from (5) and (4) the second part of (2) for real (a_{ij}) .

Schur established (5) by writing (a_{ij}) in the form

(6)
$$(a_{ij}) = (u_{ij})(t_{ij})(\overline{u}_{ii}), \quad ((\overline{u}_{ii}) = (u_{ij})^{-1}, t_{ii} = \lambda_i, t_{ij} = 0, j > i),$$
 and equating the coefficients of λ^{n-1} in the identities

$$|(a_{ij})(\bar{a}_{ji}) - \lambda(\delta_{ij})| = |(\bar{u}_{ji})| |(a_{ij})(\bar{a}_{ji}) - \lambda(\delta_{ij})| |(u_{ij})|$$

$$= |(t_{ij})(\bar{t}_{ji}) - \lambda(\delta_{ij})|,$$

Received November 18, 1949; in revised form, January 8, 1952. The author wishes to express his gratitude to the referee for valuable criticisms and suggestions.