ZEROS OF SIMPLE SETS OF POLYNOMIALS

By M. Nassif

1. A sequence $\left\{p_{n}(z)\right\}$ of polynomials is said to be basic in the sense of J. M. Whittaker [10; Ch. I, III] if any polynomial can be written as a finite linear combination of the polynomials $\left\{p_{n}(z)\right\}$. Thus if $p_{n}(z)$ is of degree n the set is necessarily basic and it is called a simple set. The mode of increase of a basic set is determined by its order and type as defined by Whittaker [10; 11]. This note deals with the mode of increase of simple sets of polynomials whose zeros lie in a finite circle. Since a substitution $z=k z^{\prime}+a$ will transform any circle $|z-a|=k$ to the unit circle, we shall assume the zeros of the polynomials to lie within or on the unit circle and apply Whittaker's theorem for linear substitution [10; 12]. It has been shown [6] that if the zeros of the polynomials belonging to simple sets all lie within or on the unit circle the set will be of increase not exceeding order 1 type $\frac{3}{2}$. The number $\frac{3}{2}$ is certainly not the best possible and the exact value ρ was shown by M. T. Eweida [1] to lie between 1.240 and 1.443 . My aim in this note is to reduce this range, and, by applying the results of N. Levinson and S. S. Macintyre concerning the zeros of derivatives of integral functions, I was able to show that

$$
\begin{equation*}
1.351<\rho<1.378 \tag{1.1}
\end{equation*}
$$

Thus the above range is reduced by about 86 per cent. In fact I have proved the following theorem

Theorem 1. When the zeros of polynomials belonging to a simple set all lie within or on the unit circle the set will be of increase not exceeding order 1 type 1.378.

Thus the upper bound of the range (1.1) is obtained; the lower bound is provided by a particular example. The procedure of the proof also leads to the derivation of the analog of Schoenberg's theorem [8] for the case of real zeros. This is formulated in the following theorem.

Theorem 2. If the zeros of polynomials belonging to a simple set are real and lie in the segment $-1 \leq x \leq 1$, the set will be of increase not exceeding order 1 type $4 / \pi$ and this bound is exact.
(Note that, since the substitution $z=z^{\prime} e^{\alpha i}$ does not affect the mode of increase of a basic set [10; 12], this theorem is also true when the zeros lie on any diameter of the unit circle.)
2. Proof of Theorem 1. Let a_{1}, a_{2}, \cdots be a sequence of points within or on the unit circle and denote, as usual, by $\left\{G_{n}(z)\right\}$ the set of Gontcharoff polynomials (see [2], [3], [10]) associated with the above points. That is to say,

Received October 9, 1951.

