TRANSCENDENTAL NUMBERS OVER CERTAIN FUNCTION FIELDS

By S. M. Spencer, Jr.

1. Introduction. This paper is concerned with certain transcendental numbers over function fields. The first part (§3) contains a proof of an analogue of a theorem due to G. Faber [1; 552]. It is shown that certain entire functions f(t) have the property that $f(\alpha)$ is transcendental for all algebraic, non-zero α . An interesting corollary to the theorem is that the non-vanishing zeros of f(t) are also transcendental.

The second part (§§4-6) contains proofs of several theorems over fields of characteristic p, all of which are generalizations of or suggested by certain theorems due to L. I. Wade [3], [5]. A typical example of such a theorem is: The series $\sum_{k=0}^{\infty} G_k^{-\epsilon_k}$ is transcendental, where the G_k are polynomials such that $G_k | G_{k+1} ; \deg G_0 \geq 1; e_0 < e_1 < \cdots ; q \geq 2;$ and $p \nmid e_k$.

The writer wishes to express his gratitude to Professor L. Carlitz, who suggested the problem and offered many suggestions throughout the preparation of the paper.

2. Preliminaries. Let F be a field of arbitrary characteristic. Let $\Phi = F[x_1, \dots, x_w]$ be the domain of polynomials in the indeterminates x_1, \dots, x_w with coefficients in F. Let $F(x_1, \dots, x_w)$ denote the quotient field. For $G \in \Phi, g = \deg G$ means total degree of G; put $|G| = k^a, k > 1, |G_1/G_2| = |G_1|/|G_2|$, thus defining a non-Archimedean valuation. Let Φ^* denote the completion of $F(x_1, \dots, x_w)$ relative to this valuation.

In §3 the characteristic will be arbitrary, but in the remainder of the paper (§§4-6) the characteristic will be a prime p, and the field F will be the finite field $GF(p^n)$.

By "transcendental" will be meant transcendental relative to $F(x_1, \dots, x_w)$, similarly, for "algebraic".

3. A proof of an analogue of the Faber Theorem.

THEOREM 1. If

(3.1)
$$f(t) = \sum_{i=0}^{\infty} C_i t^i \qquad (C_i \in F(x_1, \cdots, x_w))$$

converges for all t $\varepsilon \Phi^*$, G_n denotes the least common multiple of the denominators of C_0 , C_1 , \cdots , C_n , and there exist infinitely many numbers $n = n_1$, n_2 , \cdots such that

Received May 8, 1951.